Genomic selection for survival under naturally occurring Saprolegnia oomycete infection in farmed European whitefish Coregonus lavaretus

Author:

Calboli Federico C F1,Iso-Touru Terhi1,Bitz Oliver1,Fischer Daniel1,Nousiainen Antti2,Koskinen Heikki2,Tapio Miika1,Tapio Ilma1,Kause Antti1

Affiliation:

1. Natural Resources Institute Finland (LUKE) , FI-31600 Jokioinen , Finland

2. Natural Resources Institute Finland (LUKE) , FI-70210 Kuopio , Finland

Abstract

Abstract Saprolegnia oomycete infection causes serious economic losses and reduces fish health in aquaculture. Genomic selection based on thousands of DNA markers is a powerful tool to improve fish traits in selective breeding programs. Our goal was to develop a single nucleotide polymorphism (SNP) marker panel and to test its use in genomic selection for improved survival against Saprolegnia infection in European whitefish Coregonus lavaretus, the second most important farmed fish species in Finland. We used a double digest restriction site associated DNA (ddRAD) genotyping by sequencing method to produce a SNP panel, and we tested it analyzing data from a cohort of 1,335 fish, which were measured at different times for mortality to Saprolegnia oomycete infection and weight traits. We calculated the genetic relationship matrix (GRM) from the genome-wide genetic data, integrating it in multivariate mixed models used for the estimation of variance components and genomic breeding values (GEBVs), and to carry out Genome-Wide Association Studies for the presence of quantitative trait loci (QTL) affecting the phenotypes in analysis. We identified one major QTL on chromosome 6 affecting mortality to Saprolegnia infection, explaining 7.7% to 51.3% of genetic variance, and a QTL for weight on chromosome 4, explaining 1.8% to 5.4% of genetic variance. Heritability for mortality was 0.20 to 0.43 on the liability scale, and heritability for weight was 0.44 to 0.53. The QTL for mortality showed an additive allelic effect. We tested whether integrating the QTL for mortality as a fixed factor, together with a new GRM calculated excluding the QTL from the genetic data, would improve the accuracy estimation of GEBVs. This test was done through a cross-validation approach, which indicated that the inclusion of the QTL increased the mean accuracy of the GEBVs by 0.28 points, from 0.33 to 0.61, relative to the use of full GRM only. The area under the curve of the receiver–operator curve for mortality increased from 0.58 to 0.67 when the QTL was included in the model. The inclusion of the QTL as a fixed effect in the model increased the correlation between the GEBVs of early mortality with the late mortality, compared to a model that did not include the QTL. These results validate the usability of the produced SNP panel for genomic selection in European whitefish and highlight the opportunity for modeling QTLs in genomic evaluation of mortality due to Saprolegnia infection.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3