Use of overlapping DNA pools to discern genetic differences despite pooling error

Author:

Keele John W1ORCID,McDaneld Tara G1,Kuehn Larry A1ORCID

Affiliation:

1. USDA, ARS, U.S. Meat Animal Research Center , Clay Center, NE , USA

Abstract

Abstract Genotyping pools of commercial cattle and individual seedstock animals may reveal hidden relationships between sectors enabling use of commercial data for genetic evaluation. However, commercial data capture may be compromised by inexact pool formation. We aimed to estimate the concordance between distances or genomic covariance among pooling allele frequencies (PAFs) of DNA pools comprised of 100 animals with 0% or 50% overlap of animals in common between pools. Cattle lung samples were collected from a commercial beef processing plant on a single day. Six pools of 100 animals each were constructed so that overlap between pools was 0% or 50%. Two pools of all 200 animals were constructed to estimate PAFs for all 200 animals. Frozen lung tissue (0.01 g) from each animal was weighed into a tube containing a pool; there were two pools of 200 animals each and six pools of 100 animals each. Every contribution of an individual animal was an independent measurement to insure independence of pooling errors. Lung samples were kept on dried ice during the pooling process to keep them from thawing. The eight pools were then assayed for approximately 100,000 single nucleotide polymorphisms (SNP). PAF for each SNP and pool was based on the relative intensity of the two dyes used to detect the alleles rather than genotype calls which are not tractable from pooling data. Euclidean distances and genomic relationships among the PAFs for the eight pools were estimated and distances were tested for concordance with pool overlap using permutation-based analysis of distance. Distances among pools were concordant with the planned overlap of animals shared between pools (P = 0.0024); pool overlap accounted for 70% of the variation and pooling error accounted for 30%. Pools containing 100 animals with no overlap were the most distant from one another and pools with 50% overlap were the least distant. This work shows that we can discern differences in distance between pairs of overlapping DNA pools sharing 0% and 50% of the animals. Genomic correlations among nonoverlapping pools indicated that nonoverlapping pool pairs did not share many related animals because genomic correlations were near zero for these pairs. On the other hand, one pair of nonoverlapping pools likely contained related animals between pools because the correlation was 0.21. Pools sharing 50% overlap ranged in genomic relationship between 0.21 and 0.39 (N = 12).

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3