Total fishmeal replacement by defattedTenebrio molitorlarvae meal induces alterations in intermediary metabolism of European sea bass (Dicentrarchus labrax)

Author:

Basto Ana123,Valente Luisa M P12,Sousa Vera12,Conde-Sieira Marta3,Soengas José L3

Affiliation:

1. CIIMAR/CIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research -University of Porto , Matosinhos 4450-208 , Portugal

2. ICBAS, School of Medicine and Biomedical Sciences – University of Porto , Porto 4050-313 , Portugal

3. Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo , E-36310 Vigo , Spain

Abstract

AbstractThe replacement of fishmeal (FM) by insect meal (IM) in aquafeed formulation has been thoroughly studied lately, but little is known about their impact on nutrient metabolism of fish. This study evaluated the impact not only of partial but also total FM replacement by IM on intermediary metabolism of European sea bass (Dicentrarchus labrax). A fishmeal-based diet was used as a control (CTRL) and two other diets were formulated to include 20% and 40% of defatted Tenebrio molitor larvae meal (dTM), replacing 50% (TM50) and 100% (TM100) of fishmeal (FM), respectively. After a 16-week feeding trial, a multidisciplinary approach including assessment of histological, biochemical, molecular, and enzymatic parameters was adopted to investigate hepatic and plasmatic responses to the different dietary formulations. The results obtained demonstrated that dTM can be successfully used to replace 50% of FM in diets for European sea bass, without adversely affecting liver health or intermediary metabolism of nutrients. As for TM100, although no signs of steatosis were observed in the liver, the activity of glycolytic and lipogenic genes and enzymes increased when compared to CTRL diet (P < 0.05), resulting in higher levels of plasmatic non-esterified fatty acids and triacylglycerides (P < 0.05), which in the long-term may compromise fish health, thus precluding such a high degree of substitution for use in practical diets for European sea bass.

Funder

European Regional Development Fund

Unidades de investigación competitivas e outras accións de fomento nas universidades

Norte Portugal Regional Operational Programme

ERFD

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3