Exogenous fibrolytic enzymes promoted energy and nitrogen utilization and decreased CH4 emission per unit dry matter intake of tan sheep grazed a typical steppe by enhancing nutrient digestibility on China loess plateau

Author:

Shi Hairen1,Guo Pei1,Zhou Jieyan1,Wang Zhen1,He Meiyue1,Shi Liyuan1,Huang Xiaojuan1,Guo Penghui1,Guo Zhaoxia1,Zhang Yuwen1,Hou Fujiang1

Affiliation:

1. State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University , Lanzhou , China

Abstract

Abstract Exogenous fibrolytic enzyme (EFE) products in ruminant nutrition may be an important alternative to meet the increased demands for animal products in the future with reduced environmental impacts. This study aimed to evaluate the dose–response of EFE supplementation on the nutrient digestibility, nitrogen and energy utilization, and methane (CH4) emissions of Tan sheep grazed in summer and winter. A total of 20 Tan wether sheep with an initial body weight of 23.17 ± 0.24 kg were used in a randomized complete block design and categorized into two groups. Animals fed orally with 1 g of EFE (10,000 U/g) mixed with 30 mL of water using a drencher constituted the EFE group. For experimental accuracy, the control (CON) group was orally administered with 30 mL of normal saline daily before grazing. The following results were obtained: EFE in the diet increased dry matter intake (DMI) (P < 0.05), average daily gain (ADG) (P < 0.05), and digestibility (P < 0.05) compared with CON in summer and winter. DMI increased but ADG and digestibility decreased in winter compared with those in summer. Sheep fed with the EFE diet increased the concentrations of rumen ammonia nitrogen (P < 0.05) and total volatile fatty acids (P > 0.05), but reduced pH (P > 0.05), compared with CON in summer and winter. EFE increased nitrogen (N) intake, digestible N, retained N, and retained N/digestible N (P < 0.05) but reduced fecal N/N intake, urinary N/N intake, and excretion N/N intake in summer and winter (P < 0.05), compared with CON. Retained N/N intake was reduced and excretion N/N intake increased in winter relative to those in summer. In winter, gross energy (GE), manure E/GE, CH4 emissions, CH4/DMI, and CH4/GE increased but digestion energy and metabolic energy decreased compared with those in summer. Sheep fed with the EFE diet had a greater GE intake than those fed with the CON diet (P < 0.05) but had lesser CH4/DMI and CH4E/GE (P < 0.05) than those fed with the CON diet in both summer and winter. In conclusion, EFE supplementation increased DMI, apparent digestibility, and N deposition rate. These effects were beneficial for animal production. The CH4 emission per unit DMI of grazing Tan sheep was lesser and conducive for augmenting the environmental benefits.

Funder

National Program for S&T Collaboration of Developing Countries

Innovative Research Team in University

Lanzhou University

Key R&D Program of Xiang Hui Autonomous Region

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3