The use of a genomic relationship matrix for breed assignment of cattle breeds: comparison and combination with a machine learning method

Author:

Wilmot Hélène12ORCID,Niehoff Tobias3,Soyeurt Hélène2,Gengler Nicolas2ORCID,Calus Mario P L3ORCID

Affiliation:

1. National Fund for Scientific Research (F.R.S.-FNRS) , B-1000 Brussels , Belgium

2. TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège , B-5030 Gembloux , Belgium

3. Animal Breeding and Genomics, Wageningen University and Research , 6700AH Wageningen , the Netherlands

Abstract

Abstract To develop a breed assignment model, three main steps are generally followed: 1) The selection of breed informative single nucleotide polymorphism (SNP); 2) The training of a model, based on a reference population, that allows to classify animals to their breed of origin; and 3) The validation of the developed model on external animals i.e., that were not used in previous steps. However, there is no consensus in the literature about which methodology to follow for the first step, nor about the number of SNP to be selected. This can raise many questions when developing the model and lead to the use of sophisticated methodologies for selecting SNP (e.g., with iterative algorithms, partitions of SNP, or combination of several methods). Therefore, it may be of interest to avoid the first step by the use of all the available SNP. For this purpose, we propose the use of a genomic relationship matrix (GRM), combined or not with a machine learning method, for breed assignment. We compared it with a previously developed model based on selected informative SNP. Four methodologies were investigated: 1) The PLS_NSC methodology: selection of SNP based on a partial least square-discriminant analysis (PLS-DA) and breed assignment by classification based on the nearest shrunken centroids (NSC) method; 2) Breed assignment based on the highest mean relatedness of an animal to the reference populations of each breed (referred to mean_GRM); 3) Breed assignment based on the highest SD of the relatedness of an animal to the reference populations of each breed (referred to SD_GRM) and 4) The GRM_SVM methodology: the use of means and SD of the relatedness defined in mean_GRM and SD_GRM methodologies combined with the linear support vector machine (SVM), a machine learning method used for classification. Regarding mean global accuracies, results showed that the use of mean_GRM or GRM_SVM was not significantly different (Bonferroni corrected P > 0.0083) than the model based on a reduced SNP panel (PLS_NSC). Moreover, the mean_GRM and GRM_SVM methodology were more efficient than PLS_NSC as it was faster to compute. Therefore, it is possible to bypass the selection of SNP and, by the use of a GRM, to develop an efficient breed assignment model. In routine, we recommend the use of GRM_SVM over mean_GRM as it gave a slightly increased global accuracy, which can help endangered breeds to be maintained. The script to execute the different methodologies can be accessed on: https://github.com/hwilmot675/Breed_assignment.

Funder

Fonds De La Recherche Scientifique - FNRS

Wallonia-Brussels Federation

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3