Strategies for accommodating gene-edited sires and their descendants in genetic evaluations

Author:

Sanglard Leticia P1ORCID,See Garret M1,Spangler Matthew L1

Affiliation:

1. Department of Animal Science, University of Nebraska , Lincoln, NE 68583 , USA

Abstract

AbstractGene editing has the potential to expedite the rate of genetic gain for complex traits. However, changing nucleotides (i.e., QTN) in the genome can affect the additive genetic relationship among individuals and, consequently, impact genetic evaluations. Therefore, the objectives of this study were to estimate the impact of including gene-edited individuals in the genetic evaluation and investigate modeling strategies to mitigate potential errors. For that, a beef cattle population was simulated for nine generations (N = 13,100). Gene-edited sires (1, 25, or 50) were introduced in generation 8. The number of edited QTN was 1, 3, or 13. Genetic evaluations were performed using pedigree, genomic data, or a combination of both. Relationships were weighted based on the effect of the edited QTN. Comparisons were made using the accuracy, average absolute bias, and dispersion of the estimated breeding values (EBV). In general, the EBV of the first generation of progeny of gene-edited sires were associated with greater average absolute bias and overdispersion than the EBV of the progeny of non-gene-edited sires (P ≤ 0.001). Weighting the relationship matrices increased (P ≤ 0.001) the accuracy of EBV when the gene-edited sires were introduced by 3% and decreased (P ≤ 0.001) the average absolute bias and dispersion for the progeny of gene-edited sires. For the second generation of descendants of gene-edited sires, the absolute bias increased as the number of edited alleles increased; however, the rate of increase in absolute bias was 0.007 for each allele edited when the relationship matrices were weighted compared with 0.10 when the relationship matrices were not weighted. Overall, when gene-edited sires are included in genetic evaluations, error is introduced in the EBV, such that the EBV of progeny of gene-edited sires are underestimated. Hence, the progeny of gene-edited sires would be less likely to be selected to be parents of the next generation than what was expected based on their true genetic merit. Therefore, modeling strategies such as weighting the relationship matrices are essential to avoid incorrect selection decisions if animals that have been edited for QTN underlying complex traits are introduced into genetic evaluations.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3