Investigation of liver-targeted peripheral focused ultrasound stimulation (pFUS) and its effect on glucose homeostasis and insulin resistance in type 2 diabetes mellitus: a proof of concept, phase 1 trial

Author:

Ashe J1,Graf J1ORCID,Madhavan R1,Wallace K1,Cotero V1,Abate S1,Pandey R K2,Herzog R3,Porindla S N2,Shoudy D1,Fan Y1,Kao T -J1,Puleo C1ORCID

Affiliation:

1. General Electric (GE) Research , 1 Research Circle , Niskayuna, NY, USA

2. General Electric (GE) Research , Bengaluru, India

3. Yale Endocrinology & Metabolism, Yale School of Medicine , New Haven, CT, USA

Abstract

Summary Background Mechanical waves produced by ultrasound pulses have been shown to activate mechanosensitive ion channels and modulate peripheral nerves. However, while peripheral ultrasound neuromodulation has been demonstrated in vitro and in pre-clinical models, there have been few reports of clinical tests. Aim We modified a diagnostic imaging system for ultrasound neuromodulation in human subjects. We report the first safety and feasibility outcomes in subjects with type 2 diabetes (T2D) mellitus and discuss these outcomes in relation to previous pre-clinical results. Design The study was performed as an open label feasibility study to assess the effects of hepatic ultrasound (targeted to the porta hepatis) on glucometabolic parameters in subjects with T2D. Stimulation (peripheral focused ultrasound stimulation treatment) was performed for 3 days (i.e. 15 min per day), preceded by a baseline examination and followed by a 2-week observation period. Methods Multiple metabolic assays were employed including measures of fasting glucose and insulin, insulin resistance and glucose metabolism. The safety and tolerability were also assessed by monitoring adverse events, changes in vital signs, electrocardiogram parameters and clinical laboratory measures. Results and conclusion We report post-pFUS trends in several outcomes that were consistent with previous pre-clinical findings. Fasting insulin was lowered, resulting in a reduction of HOMA-IR scores (P-value 0.01; corrected Wilcoxon signed-rank test). Additional safety and exploratory markers demonstrated no device-related adverse impact of pFUS. Our findings demonstrate that pFUS represents a promising new treatment modality that could be used as a non-pharmaceutical adjunct or even alternative to current drug treatments in diabetes.

Funder

GE

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bridging the Gap: A Literature Review of Advancements in Obesity and Diabetes Mellitus Management;Applied Sciences;2024-07-27

2. Utilizing Deep Learning in Pre-Clinical and Clinical Diagnosis of Peripheral Neuropathies;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3