Vascular inflammation and endothelial injury in SARS-CoV-2 infection: the overlooked regulatory cascades implicated by the ACE2 gene cluster

Author:

Shovlin C L12ORCID,Vizcaychipi M P34ORCID

Affiliation:

1. From National Heart and Lung Institute, Imperial College London, London, UK

2. Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK

3. Department of Intensive Care, Chelsea & Westminster NHS Foundation Trust, London, UK

4. Department of Surgery and Cancer, Imperial College London, London, UK

Abstract

Summary Coronavirus disease 2019 (COVID-19) has presented physicians with an unprecedented number of challenges and mortality. The basic question is why, in contrast to other ‘respiratory’ viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in such multi-systemic, life-threatening complications and a severe pulmonary vasculopathy. It is widely known that SARS-CoV-2 uses membrane-bound angiotensin-converting enzyme 2 (ACE2) as a receptor, resulting in internalization of the complex by the host cell. We discuss the evidence that failure to suppress coronaviral replication within 5 days results in sustained downregulation of ACE2 protein expression and that ACE2 is under negative-feedback regulation. We then expose openly available experimental repository data that demonstrate the gene for ACE2 lies in a novel cluster of inter-regulated genes on the X chromosome including PIR encoding pirin (quercetin 2,3-dioxygenase), and VEGFD encoding the predominantly lung-expressed vascular endothelial growth factor D. The five double-elite enhancer/promoters pairs that are known to be operational, and shared read-through lncRNA transcripts, imply that ongoing SARS-CoV-2 infection will reduce host defences to reactive oxygen species, directly generate superoxide O2·− and H2O2 (a ‘ ROS storm’), and impair pulmonary endothelial homeostasis. Published cellular responses to oxidative stress complete the loop to pathophysiology observed in severe COVID-19. Thus, for patients who fail to rapidly suppress viral replication, the newly appreciated ACE2 co-regulated gene cluster predicts delayed responses that would account for catastrophic deteriorations. We conclude that ACE2 homeostatic drives provide a unified understanding that should help optimize therapeutic approaches during the wait until safe, effective vaccines and antiviral therapies for SARS-CoV-2 are delivered.

Funder

NIHR Biomedical Research Centre Funding Scheme

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3