Ab initio gene prediction for protein-coding regions

Author:

Baker Lonnie1,David Charles2,Jacobs Donald J34ORCID

Affiliation:

1. Department of Bioinformatics and Genomics, University of North Carolina at Charlotte , NC 28223, United States

2. Department of Bioinformatics, The New Zealand Institute for Plant and Food Research , Lincoln 7608, New Zealand

3. Department of Physics and Optical Science, University of North Carolina at Charlotte , NC 28223, United States

4. UNC Charlotte School of Data Science , University of North Carolina at Charlotte , NC 28223, United States

Abstract

Abstract Motivation Ab initio gene prediction in nonmodel organisms is a difficult task. While many ab initio methods have been developed, their average accuracy over long segments of a genome, and especially when assessed over a wide range of species, generally yields results with sensitivity and specificity levels in the low 60% range. A common weakness of most methods is the tendency to learn patterns that are species-specific to varying degrees. The need exists for methods to extract genetic features that can distinguish coding and noncoding regions that are not sensitive to specific organism characteristics. Results A new method based on a neural network (NN) that uses a collection of sensors to create input features is presented. It is shown that accurate predictions are achieved even when trained on organisms that are significantly different phylogenetically than test organisms. A consensus prediction algorithm for a CoDing Sequence (CDS) is subsequently applied to the first nucleotide level of NN predictions that boosts accuracy through a data-driven procedure that optimizes a CDS/non-CDS threshold. An aggregate accuracy benchmark at the nucleotide level shows that this new approach performs better than existing ab initio methods, while requiring significantly less training data. Availability and implementation https://github.com/BioMolecularPhysicsGroup-UNCC/MachineLearning.

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MicroAnnot: A Dedicated Workflow for Accurate Microsporidian Genome Annotation;International Journal of Molecular Sciences;2024-01-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3