Prediction of metabolite–protein interactions based on integration of machine learning and constraint-based modeling

Author:

Soleymani Babadi Fayaz1,Razaghi-Moghadam Zahra2ORCID,Zare-Mirakabad Fatemeh1ORCID,Nikoloski Zoran2ORCID

Affiliation:

1. Departement of Mathematics and Computer Science, Amirkabir University of Technology , Tehran, Iran

2. Systems Biology and Mathematical Biology, Max Planck Institute of Molecular Plant Physiology , Potsdam, Germany

Abstract

Abstract Motivation Metabolite–protein interactions play an important role in regulating protein functions and metabolism. Yet, predictions of metabolite–protein interactions using genome-scale metabolic networks are lacking. Here, we fill this gap by presenting a computational framework, termed SARTRE, that employs features corresponding to shadow prices determined in the context of flux variability analysis to predict metabolite–protein interactions using supervised machine learning. Results By using gold standards for metabolite–protein interactomes and well-curated genome-scale metabolic models of Escherichia coli and Saccharomyces cerevisiae, we found that the implementation of SARTRE with random forest classifiers accurately predicts metabolite–protein interactions, supported by an average area under the receiver operating curve of 0.86 and 0.85, respectively. Ranking of features based on their importance for classification demonstrated the key role of shadow prices in predicting metabolite–protein interactions. The quality of predictions is further supported by the excellent agreement of the organism-specific classifiers on unseen interactions shared between the two model organisms. Further, predictions from SARTRE are highly competitive against those obtained from a recent deep-learning approach relying on a variety of protein and metabolite features. Together, these findings show that features extracted from constraint-based analyses of metabolic networks pave the way for understanding the functional roles of the interactions between proteins and small molecules. Availability and implementation https://github.com/fayazsoleymani/SARTRE.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3