CroMaSt: a workflow for assessing protein domain classification by cross-mapping of structural instances between domain databases and structural alignment

Author:

Dhondge Hrishikesh1ORCID,Chauvot de Beauchêne Isaure1ORCID,Devignes Marie-Dominique1ORCID

Affiliation:

1. Université de Lorraine, CNRS, Inria, LORIA , F-54000 Nancy, France

Abstract

Abstract Motivation Protein domains can be viewed as building blocks, essential for understanding structure–function relationships in proteins. However, each domain database classifies protein domains using its own methodology. Thus, in many cases, domain models and boundaries differ from one domain database to the other, raising the question of domain definition and enumeration of true domain instances. Results We propose an automated iterative workflow to assess protein domain classification by cross-mapping domain structural instances between domain databases and by evaluating structural alignments. CroMaSt (for Cross-Mapper of domain Structural instances) will classify all experimental structural instances of a given domain type into four different categories (‘Core’, ‘True’, ‘Domain-like’ and ‘Failed’). CroMast is developed in Common Workflow Language and takes advantage of two well-known domain databases with wide coverage: Pfam and CATH. It uses the Kpax structural alignment tool with expert-adjusted parameters. CroMaSt was tested with the RNA Recognition Motif domain type and identifies 962 ‘True’ and 541 ‘Domain-like’ structural instances for this domain type. This method solves a crucial issue in domain-centric research and can generate essential information that could be used for synthetic biology and machine-learning approaches of protein domain engineering. Availability and implementation The workflow and the Results archive for the CroMaSt runs presented in this article are available from WorkflowHub (doi: 10.48546/workflowhub.workflow.390.2). Supplementary information Supplementary data are available at Bioinformatics Advances online.

Funder

Marie Skłodowska-Curie Innovative Training Network

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3