OmicsTIDE: interactive exploration of trends in multi-omics data

Author:

Harbig Theresa A1ORCID,Fratte Julian1,Krone Michael1,Nieselt Kay1

Affiliation:

1. Institute for Bioinformatics and Medical Informatics, University of Tuebingen , Tuebingen 72076, Germany

Abstract

Abstract Motivation The increasing amount of data produced by omics technologies has enabled researchers to study phenomena across multiple omics layers. Besides data-driven analysis strategies, interactive visualization tools have been developed for a more transparent analysis. However, most state-of-the-art tools do not reconstruct the impact of a single omics layer on the integration result. Results We developed a data classification scheme focusing on different aspects of multi-omics datasets for a systemic understanding. Based on this classification, we developed the Omics Trend-comparing Interactive Data Explorer (OmicsTIDE), an interactive visualization tool for the comparison of gene-based quantitative omics data. The tool consists of a computational part that clusters omics datasets to determine trends and an interactive visualization. The trends are visualized as profile plots and are connected by a Sankey diagram that allows for an interactive pairwise trend comparison to discover concordant and discordant trends. Moreover, large-scale omics datasets are broken down into small subsets that can be analyzed functionally using Gene Ontology enrichment within few analysis steps. We demonstrate the interactive analysis using OmicsTIDE with two case studies focusing on different experimental designs. Availability and implementation OmicsTIDE is a web tool available via http://omicstide-tuevis.cs.uni-tuebingen.de/. Supplementary information Supplementary data are available at Bioinformatics Advances online.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Reference24 articles.

1. Methods for the integration of multi-omics data: mathematical aspects;Bersanelli;BMC Bioinformatics,2016

2. D3 data-driven documents;Bostock;IEEE Trans. Vis. Comput. Graph,2011

3. A density-based algorithm for discovering clusters in large spatial databases with noise;Ester;KDD,1996

4. Integrating data: different analytical tasks require different visual representations;Gehlenborg;Nat. Methods,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Metabolomics across the Spectrum of Pulmonary and Critical Care Medicine;American Journal of Respiratory Cell and Molecular Biology;2024-07

2. Multi Omics Applications in Biological Systems;Current Issues in Molecular Biology;2024-06-11

3. How is Big Data reshaping preclinical aging research?;Lab Animal;2023-11-28

4. From multi-omics approaches to personalized medicine in myocardial infarction;Frontiers in Cardiovascular Medicine;2023-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3