Single-cell type annotation with deep learning in 265 cell types for humans

Author:

Dong Sherry12,Deng Kaiwen3,Huang Xiuzhen2ORCID

Affiliation:

1. Skyline High School , Ann Arbor, MI 48103, United States

2. National AI Campus and Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood , CA 90069, United States

3. Department of Computational Medicine and Bioinformatics, University of Michigan , Ann Arbor, MI 48109, United States

Abstract

Abstract Motivation Annotating cell types is a challenging yet essential task in analyzing single-cell RNA sequencing data. However, due to the lack of a gold standard, it is difficult to evaluate the algorithms fairly and an overfitting algorithm may be favored in benchmarks. To address this challenge, we developed a deep learning-based single-cell type prediction tool that assigns the cell type to 265 different cell types for humans, based on data from approximately five million cells. Results We achieved a median area under the ROC curve (AUC) of 0.93 when evaluated across datasets. We found that inconsistent labeling in the existing database generated by different labs contributed to the mistakes of the model. Therefore, we used cell ontology to correct the annotations and retrained the model, which resulted in 0.971 median AUC. Our study reveals a limiting factor of the accuracy one may achieve with the current database annotation and points to the solutions towards an algorithm-based correction of the gold standard for future automated cell annotation approaches. Availability and implementation The code is available at: https://github.com/SherrySDong/Hierarchical-Correction-Improves-Automated-Single-cell-Type-Annotation. Data used in this study are listed in Supplementary Table S1 and are retrievable at the CZI database.

Funder

National Institute of Health AIM-AHEAD Data and Infrastructure Capacity Building

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3