Nightingale: web components for protein feature visualization

Author:

Salazar Gustavo A1ORCID,Luciani Aurélien1ORCID,Watkins Xavier1ORCID,Kandasaamy Swaathi1ORCID,Rice Daniel L1ORCID,Blum Matthias1ORCID,Bateman Alex1ORCID,Martin Maria1ORCID

Affiliation:

1. Macromolecules, Structure, Chemistry and Bioimaging Section, European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI) , Wellcome Genome Campus , Hinxton, CB10 1SD, UK

Abstract

Abstract Motivation The visualization of biological data is a fundamental technique that enables researchers to understand and explain biology. Some of these visualizations have become iconic, for instance: tree views for taxonomy, cartoon rendering of 3D protein structures or tracks to represent features in a gene or protein, for instance in a genome browser. Nightingale provides visualizations in the context of proteins and protein features. Results Nightingale is a library of re-usable data visualization web components that are currently used by UniProt and InterPro, among other projects. The components can be used to display protein sequence features, variants, interaction data, 3D structure, etc. These components are flexible, allowing users to easily view multiple data sources within the same context, as well as compose these components to create a customized view. Availability and implementation Nightingale examples and documentation are freely available at https://ebi-webcomponents.github.io/nightingale/. It is distributed under the MIT license, and its source code can be found at https://github.com/ebi-webcomponents/nightingale.

Funder

National Human Genome Research Institute

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3