Improving efficiency of fitting Cox proportional hazards models for time-to-event outcomes in genome-wide association studies (GWAS)

Author:

Gebski Val1ORCID,Silva S Sandun M1,Byth Karen1ORCID,Jenkins Alicia1,Keech Anthony1

Affiliation:

1. NHMRC Clinical Trials Centre, University of Sydney , Camperdown, NSW 1450, Australia

Abstract

Abstract Summary Technologies identifying single nucleotide polymorphisms (SNPs) in DNA sequencing yield an avalanche of data requiring analysis and interpretation. Standard methods may require many weeks of processing time. The use of statistical methods requiring data sorting, matrix inversions of a high-dimension and replication in subsets of the data on multiple outcomes exacerbate these times. A method which reduces the computational time in problems with time-to-event outcomes and hundreds of thousands/millions of SNPs using Cox–Snell residuals after fitting the Cox proportional hazards model (PH) to a fixed set of concomitant variables is proposed. This yields coefficients for SNP effect from a Cox–Snell adjusted Poisson model and shows a high concordance to the adjusted PH model. The method is illustrated with a sample of 10 000 SNPs from a genome-wide association study in a diabetic population. The gain in processing efficiency using the proposed method based on Poisson modelling can be as high as 62%. This could result in saving of over three weeks processing time if 5 million SNPs require analysis. The method involves only a single predictor variable (SNP), offering a simpler, computationally more stable approach to examining and identifying SNP patterns associated with the outcome(s) allowing for a faster development of genetic signatures. Use of deviance residuals from the PH model to screen SNPs demonstrates a large discordance rate at a 0.2% threshold of concordance. This rate is 15 times larger than that based on the Cox–Snell residuals from the Cox–Snell adjusted Poisson model. Availability and implementation The method is simple to implement as the procedures are available in most statistical packges. The approach involves obtaining Cox-Snell residuals from a PH model, to a binary time-to-event outcome, for factors which need to be common when assessing each SNP. Each SNP is then fitted as a predictor to the outcome of interest using a Poisson model with the Cox-Snell as the exposure variable.

Funder

National Health and Medical Research Council Project

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3