Affiliation:
1. Department of Electrical Engineering and Computer Science, NextGen Precision Health Institute, University of Missouri , Columbia, MO 65211, United States
Abstract
Abstract
Motivation
As fewer than 1% of proteins have protein function information determined experimentally, computationally predicting the function of proteins is critical for obtaining functional information for most proteins and has been a major challenge in protein bioinformatics. Despite the significant progress made in protein function prediction by the community in the last decade, the general accuracy of protein function prediction is still not high, particularly for rare function terms associated with few proteins in the protein function annotation database such as the UniProt.
Results
We introduce TransFew, a new transformer model, to learn the representations of both protein sequences and function labels [Gene Ontology (GO) terms] to predict the function of proteins. TransFew leverages a large pre-trained protein language model (ESM2-t48) to learn function-relevant representations of proteins from raw protein sequences and uses a biological natural language model (BioBert) and a graph convolutional neural network-based autoencoder to generate semantic representations of GO terms from their textual definition and hierarchical relationships, which are combined together to predict protein function via the cross-attention. Integrating the protein sequence and label representations not only enhances overall function prediction accuracy, but delivers a robust performance of predicting rare function terms with limited annotations by facilitating annotation transfer between GO terms.
Availability and implementation
https://github.com/BioinfoMachineLearning/TransFew.
Funder
USA National Science Foundation
Publisher
Oxford University Press (OUP)
Reference42 articles.
1. Multimodal biomedical AI;Acosta;Nat Med,2022
2. Flamingo: a visual language model for few-shot learning;Alayrac;Adv Neural Inf Process Syst,2022
3. The Gene Ontology knowledgebase in 2023;Aleksander;Genetics,2023
4. Gene ontology: tool for the unification of biology;Ashburner;Nat Genet,2000
5. Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function;Boadu,2023