Single-cell gene set scoring with nearest neighbor graph smoothed data (gssnng)

Author:

Gibbs David L1,Strasser Michael K2,Huang Sui2

Affiliation:

1. Shmulevich Lab, Institute for Systems Biology , Seattle, WA 98106, United States

2. Huang Lab, Institute for Systems Biology , Seattle, WA 98106, United States

Abstract

Abstract Summary Gene set scoring (or enrichment) is a common dimension reduction task in bioinformatics that can be focused on the differences between groups or at the single sample level. Gene sets can represent biological functions, molecular pathways, cell identities, and more. Gene set scores are context dependent values that are useful for interpreting biological changes following experiments or perturbations. Single sample scoring produces a set of scores, one for each member of a group, which can be analyzed with statistical models that can include additional clinically important factors such as gender or age. However, the sparsity and technical noise of single-cell expression measures create difficulties for these methods, which were originally designed for bulk expression profiling (microarrays, RNAseq). This can be greatly remedied by first applying a smoothing transformation that shares gene measure information within transcriptomic neighborhoods. In this work, we use the nearest neighbor graph of cells for matrix smoothing to produce high quality gene set scores on a per-cell, per-group, level which is useful for visualization and statistical analysis. Availability and implementation The gssnng software is available using the python package index (PyPI) and works with Scanpy AnnData objects. It can be installed using “pip install gssnng.” More information and demo notebooks: see https://github.com/IlyaLab/gssnng.

Funder

Cancer Research UK Grand Challenge

Tlsty Lab

McGill University Thoracic and Upper GI Cancer Research Laboratories

Advanced Genomic Technologies Laboratory

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3