Novel symmetry-preserving neural network model for phylogenetic inference

Author:

Tang Xudong12,Zepeda-Nuñez Leonardo3,Yang Shengwen12,Zhao Zelin3,Solís-Lemus Claudia14ORCID

Affiliation:

1. Wisconsin Institute for Discovery, University of Wisconsin-Madison , Madison, WI 53706, United States

2. Department of Statistics, University of Wisconsin-Madison , Madison, WI 53706, United States

3. Department of Mathematics, University of Wisconsin-Madison , Madison, WI 53706, United States

4. Department of Plant Pathology, University of Wisconsin-Madison , Madison, WI 53706, United States

Abstract

Abstract Motivation Scientists world-wide are putting together massive efforts to understand how the biodiversity that we see on Earth evolved from single-cell organisms at the origin of life and this diversification process is represented through the Tree of Life. Low sampling rates and high heterogeneity in the rate of evolution across sites and lineages produce a phenomenon denoted “long branch attraction” (LBA) in which long nonsister lineages are estimated to be sisters regardless of their true evolutionary relationship. LBA has been a pervasive problem in phylogenetic inference affecting different types of methodologies from distance-based to likelihood-based. Results Here, we present a novel neural network model that outperforms standard phylogenetic methods and other neural network implementations under LBA settings. Furthermore, unlike existing neural network models in phylogenetics, our model naturally accounts for the tree isomorphisms via permutation invariant functions which ultimately result in lower memory and allows the seamless extension to larger trees. Availability and implementation We implement our novel theory on an open-source publicly available GitHub repository: https://github.com/crsl4/nn-phylogenetics.

Funder

Department of Energy

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3