HiTaxon: a hierarchical ensemble framework for taxonomic classification of short reads

Author:

Verma Bhavish12ORCID,Parkinson John123ORCID

Affiliation:

1. Program in Molecular Medicine, Hospital for Sick Children , Toronto, ON M5G 0A4, Canada

2. Department of Molecular Genetics, University of Toronto , Toronto, ON M5S 1A8, Canada

3. Department of Biochemistry, University of Toronto , Toronto, ON M5S 1A8, Canada

Abstract

Abstract Motivation Whole microbiome DNA and RNA sequencing (metagenomics and metatranscriptomics) are pivotal to determining the functional roles of microbial communities. A key challenge in analyzing these complex datasets, typically composed of tens of millions of short reads, is accurately classifying reads to their taxa of origin. While still performing worse relative to reference-based short-read tools in species classification, ML algorithms have shown promising results in taxonomic classification at higher ranks. A recent approach exploited to enhance the performance of ML tools, which can be translated to reference-dependent classifiers, has been to integrate the hierarchical structure of taxonomy within the tool’s predictive algorithm. Results Here, we introduce HiTaxon, an end-to-end hierarchical ensemble framework for taxonomic classification. HiTaxon facilitates data collection and processing, reference database construction and optional training of ML models to streamline ensemble creation. We show that databases created by HiTaxon improve the species-level performance of reference-dependent classifiers, while reducing their computational overhead. In addition, through exploring hierarchical methods for HiTaxon, we highlight that our custom approach to hierarchical ensembling improves species-level classification relative to traditional strategies. Finally, we demonstrate the improved performance of our hierarchical ensembles over current state-of-the-art classifiers in species classification using datasets comprised of either simulated or experimentally derived reads. Availability and implementation HiTaxon is available at: https://github.com/ParkinsonLab/HiTaxon.

Funder

Natural Sciences and Engineering Research Council

Canadian Institutes for Health Research

Ontario Ministry of Agriculture, Food and Rural Affairs

SciNet HPC Consortium

Canada Foundation for Innovation

Publisher

Oxford University Press (OUP)

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3