KOMPUTE: imputing summary statistics of missing phenotypes in high-throughput model organism data

Author:

Warkentin Coby12,O’Connell Michael J1,Lee Donghyung1ORCID

Affiliation:

1. Department of Statistics, Miami University , Oxford, OH 45056, United States

2. InfoWorks, Inc. , Nashville, TN 37205, United States

Abstract

Abstract Motivation The International Mouse Phenotyping Consortium (IMPC) is striving to build a comprehensive functional catalog of mammalian protein-coding genes by systematically producing and phenotyping gene-knockout mice for almost every protein-coding gene in the mouse genome and by testing associations between gene loss-of-function and phenotype. To date, the IMPC has identified over 90 000 gene–phenotype associations, but many phenotypes have not yet been measured for each gene, resulting in largely incomplete data; ∼75.6% of association summary statistics are still missing in the latest IMPC summary statistics dataset (IMPC release version 16). Results To overcome these challenges, we propose KOMPUTE, a novel method for imputing missing summary statistics in the IMPC dataset. Using conditional distribution properties of multivariate normal, KOMPUTE estimates the association Z-scores of unmeasured phenotypes for a particular gene as a conditional expectation given the Z-scores of measured phenotypes. Our evaluation of the method using simulated and real-world datasets demonstrates its superiority over the singular value decomposition matrix completion method in various scenarios. Availability and implementation An R package for KOMPUTE is publicly available at https://github.com/statsleelab/kompute, along with usage examples and results for different phenotype domains at https://statsleelab.github.io/komputeExamples.

Funder

Miami University start-up fund

Shelter Diabetes Research Award

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3