Affiliation:
1. Institute of Ecology and Evolution, University of Bern , 3012 Bern, Switzerland
2. Swiss Institute for Bioinformatics, Quartier Sorge Bâtiment Amphipôle , 1015 Lausanne, Switzerland
Abstract
Abstract
Motivation
Understanding the population genetics of complex polygenic traits during adaptation is challenging.
Results
Here, we implement a forward-in-time population-genetic simulator (STUN) based on Wright-Fisher dynamics. STUN is a flexible and user-friendly software package for simulating the polygenic adaptation of recombining haploid populations using either new mutations or standing genetic variation. STUN assumes that populations adapt to sudden environmental changes by undergoing selection on a new fitness landscape. With pre-implemented fitness landscape models like Rough Mount Fuji, NK, Block, additive, and House-of-Cards, users can explore the effect of different levels of epistasis (ruggedness of the fitness landscape). Custom fitness landscapes and recombination maps can also be defined. STUN empowers both experimentalists and advanced programmers to study the evolution of complex polygenic traits and to dissect the adaptation process.
Availability and implementation
STUN is implemented in Rust. Its source code is available at https://github.com/banklab/STUN and archived on Zenodo under doi: 10.5281/zenodo.10246377. The repository includes a link to the software’s manual and binary files for Linux, macOS and Windows.
Funder
European Research Council Starting
Swiss National Science Foundation
Human Frontier Science Program Young Investigator
Publisher
Oxford University Press (OUP)
Subject
Computer Science Applications,Genetics,Molecular Biology,Structural Biology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献