The impact of similarity metrics on cell-type clustering in highly multiplexed in situ imaging cytometry data

Author:

Willie Elijah12ORCID,Yang Pengyi1234ORCID,Patrick Ellis1235ORCID

Affiliation:

1. Sydney Precision Data Science Centre, The University of Sydney , Camperdown, NSW 2006, Australia

2. School of Mathematics and Statistics, The University of Sydney , Camperdown, NSW 2006, Australia

3. Laboratory of Data Discovery for Health Limited (D24H), Science Park , Hong Kong, China

4. Computational Systems Biology Group, Children’s Medical Research Institute, The University of Sydney , Westmead, NSW 2145, Australia

5. Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney , Westmead, NSW 2145, Australia

Abstract

Abstract Motivation The advent of highly multiplexed in situ imaging cytometry assays has revolutionized the study of cellular systems, offering unparalleled detail in observing cellular activities and characteristics. These assays provide comprehensive insights by concurrently profiling the spatial distribution and molecular features of numerous cells. In navigating this complex data landscape, unsupervised machine learning techniques, particularly clustering algorithms, have become essential tools. They enable the identification and categorization of cell types and subsets based on their molecular characteristics. Despite their widespread adoption, most clustering algorithms in use were initially developed for cell suspension technologies, leading to a potential mismatch in application. There is a critical gap in the systematic evaluation of these methods, particularly in determining the properties that make them optimal for in situ imaging assays. Addressing this gap is vital for ensuring accurate, reliable analyses and fostering advancements in cellular biology research. Results In our extensive investigation, we evaluated a range of similarity metrics, which are crucial in determining the relationships between cells during the clustering process. Our findings reveal substantial variations in clustering performance, contingent on the similarity metric employed. These variations underscore the importance of selecting appropriate metrics to ensure accurate cell type and subset identification. In response to these challenges, we introduce FuseSOM, a novel ensemble clustering algorithm that integrates hierarchical multiview learning of similarity metrics with self-organizing maps. Through a rigorous stratified subsampling analysis framework, we demonstrate that FuseSOM outperforms existing best-practice clustering methods specifically tailored for in situ imaging cytometry data. Our work not only provides critical insights into the performance of clustering algorithms in this novel context but also offers a robust solution, paving the way for more accurate and reliable in situ imaging cytometry data analysis. Availability and implementation The FuseSOM R package is available on Bioconductor and is available under the GPL-3 license. All the codes for the analysis performed can be found at Github.

Funder

Australian Research Council Discovery Early Career Researcher

Australian Government

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3