Network-augmented compartmental models to track asymptomatic disease spread

Author:

Dabke Devavrat Vivek1ORCID,Karntikoon Kritkorn2ORCID,Aluru Chaitanya2ORCID,Singh Mona2ORCID,Chazelle Bernard2ORCID

Affiliation:

1. The Program in Applied and Computational Mathematics, Princeton University , Princeton, NJ 08544, USA

2. Department of Computer Science, Princeton University , Princeton, NJ 08544, USA

Abstract

Abstract Summary A major challenge in understanding the spread of certain newly emerging viruses is the presence of asymptomatic cases. Their prevalence is hard to measure in the absence of testing tools, and yet the information is critical for tracking disease spread and shaping public health policies. Here, we introduce a framework that combines classic compartmental models with travel networks and we use it to estimate asymptomatic rates. Our platform, traSIR (“tracer”), is an augmented susceptible-infectious-recovered (SIR) model that incorporates multiple locations and the flow of people between them; it has a compartment model for each location and estimates of commuting traffic between compartments. TraSIR models both asymptomatic and symptomatic infections, as well as the dampening effect symptomatic infections have on traffic between locations. We derive analytical formulae to express the asymptomatic rate as a function of other key model parameters. Next, we use simulations to show that empirical data fitting yields excellent agreement with actual asymptomatic rates using only information about the number of symptomatic infections over time and compartments. Finally, we apply our model to COVID-19 data consisting of reported daily infections in the New York metropolitan area and estimate asymptomatic rates of COVID-19 to be ∼34%, which is within the 30–40% interval derived from widespread testing. Overall, our work demonstrates that traSIR is a powerful approach to express viral propagation dynamics over geographical networks and estimate key parameters relevant to virus transmission. Availability and implementation No public repository.

Funder

Computing and Communication Foundations

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Reference33 articles.

1. Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models;Ajelli;BMC Infect. Dis,2010

2. A network-based compartmental model for the spread of whooping cough in Nebraska;Ameri;AMIA Jt. Summits Transl. Sci. Proc,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Method for Vertex Clustering in Dynamic Networks;Studies in Computational Intelligence;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3