scVIC: deep generative modeling of heterogeneity for scRNA-seq data

Author:

Xiong Jiankang12,Gong Fuzhou12,Ma Liang23ORCID,Wan Lin12ORCID

Affiliation:

1. National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences , Beijing 100190, China

2. School of Mathematical Sciences, University of Chinese Academy of Sciences , Beijing 100049, China

3. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences , Beijing 100101, China

Abstract

Abstract Motivation Single-cell RNA sequencing (scRNA-seq) has become a valuable tool for studying cellular heterogeneity. However, the analysis of scRNA-seq data is challenging because of inherent noise and technical variability. Existing methods often struggle to simultaneously explore heterogeneity across cells, handle dropout events, and account for batch effects. These drawbacks call for a robust and comprehensive method that can address these challenges and provide accurate insights into heterogeneity at the single-cell level. Results In this study, we introduce scVIC, an algorithm designed to account for variational inference, while simultaneously handling biological heterogeneity and batch effects at the single-cell level. scVIC explicitly models both biological heterogeneity and technical variability to learn cellular heterogeneity in a manner free from dropout events and the bias of batch effects. By leveraging variational inference, we provide a robust framework for inferring the parameters of scVIC. To test the performance of scVIC, we employed both simulated and biological scRNA-seq datasets, either including, or not, batch effects. scVIC was found to outperform other approaches because of its superior clustering ability and circumvention of the batch effects problem. Availability and implementation The code of scVIC and replication for this study are available at https://github.com/HiBearME/scVIC/tree/v1.0.

Funder

NSFC

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3