The Free Lunch is not over yet—systematic exploration of numerical thresholds in maximum likelihood phylogenetic inference

Author:

Haag Julia1ORCID,Hübner Lukas12ORCID,Kozlov Alexey M1ORCID,Stamatakis Alexandros123ORCID

Affiliation:

1. Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies , 69118 Heidelberg, Germany

2. Institute for Theoretical Informatics, Karlsruhe Institute of Technology , 76131 Karlsruhe, Germany

3. Biodiversity Computing Group, Institute of Computer Science, Foundation for Research and Technology – Hellas , 70013 Heraklion, Greece

Abstract

Abstract Summary Maximum likelihood (ML) is a widely used phylogenetic inference method. ML implementations heavily rely on numerical optimization routines that use internal numerical thresholds to determine convergence. We systematically analyze the impact of these threshold settings on the log-likelihood and runtimes for ML tree inferences with RAxML-NG, IQ-TREE, and FastTree on empirical datasets. We provide empirical evidence that we can substantially accelerate tree inferences with RAxML-NG and IQ-TREE by changing the default values of two such numerical thresholds. At the same time, altering these settings does not significantly impact the quality of the inferred trees. We further show that increasing both thresholds accelerates the RAxML-NG bootstrap without influencing the resulting support values. For RAxML-NG, increasing the likelihood thresholds ϵLnL and ϵbrlen to 10 and 103, respectively, results in an average tree inference speedup of 1.9 ± 0.6 on Data collection 1, 1.8 ± 1.1 on Data collection 2, and 1.9 ± 0.8 on Data collection 2 for the RAxML-NG bootstrap compared to the runtime under the current default setting. Increasing the likelihood threshold ϵLnL to 10 in IQ-TREE results in an average tree inference speedup of 1.3 ± 0.4 on Data collection 1 and 1.3 ± 0.9 on Data collection 2. Availability and implementation All MSAs we used for our analyses, as well as all results, are available for download at https://cme.h-its.org/exelixis/material/freeLunch_data.tar.gz. Our data generation scripts are available at https://github.com/tschuelia/ml-numerical-analysis.

Funder

European Union

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3