FLONE: fully Lorentz network embedding for inferring novel drug targets

Author:

Yue Yang1,McDonald David2,Hao Luoying1,Lei Huangshu3,Butler Mark S2,He Shan1ORCID

Affiliation:

1. Centre for Computational Biology, School of Computer Science, The University of Birmingham , Edgbaston, Birmingham, B15 2TT, UK

2. AIA Insights Ltd. , 71-75 Shelton Street, London, Greater London, WC2H 9JQ, UK

3. YaoPharma Co., Ltd. , 100 Xingguang Avenue, Renhe Town, Yubei District, Chongqing, 401121, China

Abstract

Abstract Motivation To predict drug targets, graph-based machine-learning methods have been widely used to capture the relationships between drug, target and disease entities in drug–disease–target (DDT) networks. However, many methods cannot explicitly consider disease types at inference time and so will predict the same target for a given drug under any disease condition. Meanwhile, DDT networks are usually organized hierarchically carrying interactive relationships between involved entities, but these methods, especially those based on Euclidean embedding cannot fully utilize such topological information, which might lead to sub-optimal results. We hypothesized that, by importing hyperbolic embedding specifically for modeling hierarchical DDT networks, graph-based algorithms could better capture relationships between aforementioned entities, which ultimately improves target prediction performance. Results We formulated the target prediction problem as a knowledge graph completion task explicitly considering disease types. We proposed FLONE, a hyperbolic embedding-based method based on capturing hierarchical topological information in DDT networks. The experimental results on two DDT networks showed that by introducing hyperbolic space, FLONE generates more accurate target predictions than its Euclidean counterparts, which supports our hypothesis. We also devised hyperbolic encoders to fuse external domain knowledge, to make FLONE enable handling samples corresponding to previously unseen drugs and targets for more practical scenarios. Availability and implementation Source code and dataset information are at: https://github.com/arantir123/DDT_triple_prediction. Supplementary information Supplementary data are available at Bioinformatics Advances online.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Reference38 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3