A statistical algorithm for outbreak detection in multisite settings: an application to sick leave monitoring

Author:

Duchemin Tom1,Noufaily Angela2ORCID,Hocine Mounia N1

Affiliation:

1. Conservatoire National des Arts et Métiers , Paris, France

2. Clinical Trials Unit, Warwick Medical School , Coventry, UK

Abstract

Abstract Motivation Public health authorities monitor cases of health-related problems over time using surveillance algorithms that detect unusually high increases in the number of cases, namely aberrations. Statistical aberrations signal outbreaks when further investigation reveals epidemiological significance. The increasing availability and diversity of epidemiological data and the most recent epidemic threats call for more accurate surveillance algorithms that not just detect aberration times but also detect locations. Sick leave data, for instance, can be monitored across companies to identify companies-related aberrations. In this context, we develop an extension to multisite surveillance of a routinely used aberration detection algorithm, the quasi-Poisson regression Farrington Flexible algorithm. The new algorithm consists of a negative-binomial mixed effects regression model with a random effects term for sites and a new reweighting procedure reducing the effect of past aberrations. Results A wide range of simulations shows that, compared with Farrington Flexible, the new algorithm produces better false positive rates and similar probabilities of detecting genuine outbreaks, for case counts that exceed historical baselines by 3 SD. As expected, higher surges lead to lower false positive rates and higher probabilities of detecting true outbreaks. The new algorithm provides better detection of true outbreaks, reaching 100%, when cases exceed eight baseline standard deviations. We apply our algorithm to sick leave rates in the context of COVID-19 and find that it detects the pandemic effect. The new algorithm is easily implementable over a range of contrasting data scenarios, providing good overall performance and new perspectives for multisite surveillance. Availability and implementation All the analyses are performed in the R statistical software using the package glmmTMB. The code for performing the analyses and for generating the simulations can be found online at the following link: https://github.com/TomDuchemin/mixed_surveillance. Contact a.noufaily@warwick.ac.uk

Funder

Association Nationale de la Recherche et de la Technologie

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3