DataCurator.jl: efficient, portable and reproducible validation, curation and transformation of large heterogeneous datasets using human-readable recipes compiled into machine-verifiable templates

Author:

Cardoen Ben1ORCID,Ben Yedder Hanene1ORCID,Lee Sieun23ORCID,Nabi Ivan Robert45ORCID,Hamarneh Ghassan1ORCID

Affiliation:

1. Department of Computing Science, Simon Fraser University , 8888 University Dr W , Burnaby, British Columbia V5A1S6, Canada

2. Precision Imaging Beacon, University of Nottingham , Nottingham NG7 2RD, UK

3. Department of Mental Health and Clinical Neuroscience, University of Nottingham , Nottingham NG7 2UH, UK

4. Life Sciences Institute, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada

5. School of Biomedical Engineering, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada

Abstract

Summary Large-scale processing of heterogeneous datasets in interdisciplinary research often requires time-consuming manual data curation. Ambiguity in the data layout and preprocessing conventions can easily compromise reproducibility and scientific discovery, and even when detected, it requires time and effort to be corrected by domain experts. Poor data curation can also interrupt processing jobs on large computing clusters, causing frustration and delays. We introduce DataCurator, a portable software package that verifies arbitrarily complex datasets of mixed formats, working equally well on clusters as on local systems. Human-readable TOML recipes are converted into executable, machine-verifiable templates, enabling users to easily verify datasets using custom rules without writing code. Recipes can be used to transform and validate data, for pre- or post-processing, selection of data subsets, sampling and aggregation, such as summary statistics. Processing pipelines no longer need to be burdened by laborious data validation, with data curation and validation replaced by human and machine-verifiable recipes specifying rules and actions. Multithreaded execution ensures scalability on clusters, and existing Julia, R and Python libraries can be reused. DataCurator enables efficient remote workflows, offering integration with Slack and the ability to transfer curated data to clusters using OwnCloud and SCP. Code available at: https://github.com/bencardoen/DataCurator.jl.

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Reference10 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3