CellsFromSpace: a fast, accurate, and reference-free tool to deconvolve and annotate spatially distributed omics data

Author:

Thuilliez Corentin1,Moquin-Beaudry Gaël1ORCID,Khneisser Pierre2,Marques Da Costa Maria Eugenia13,Karkar Slim45ORCID,Boudhouche Hanane1,Drubay Damien67ORCID,Audinot Baptiste1,Geoerger Birgit13,Scoazec Jean-Yves2,Gaspar Nathalie13,Marchais Antonin13ORCID

Affiliation:

1. INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay , Villejuif F-94805, France

2. Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus , Villejuif 94805, France

3. Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay , Villejuif 94805, France

4. University Bordeaux, CNRS, IBGC, UMR , Bordeaux 33077, France

5. Bordeaux Bioinformatic Center CBiB, University of Bordeaux , Bordeaux 33000, France

6. Office of Biostatistics and Epidemiology, Gustave Roussy, Université Paris-Saclay , Villejuif 94805, France

7. Inserm, Université Paris-Saclay, CESP U1018, Oncostat, Labeled Ligue Contre le Cancer , Villejuif 94805, France

Abstract

Abstract Motivation Spatial transcriptomics enables the analysis of cell crosstalk in healthy and diseased organs by capturing the transcriptomic profiles of millions of cells within their spatial contexts. However, spatial transcriptomics approaches also raise new computational challenges for the multidimensional data analysis associated with spatial coordinates. Results In this context, we introduce a novel analytical framework called CellsFromSpace based on independent component analysis (ICA), which allows users to analyze various commercially available technologies without relying on a single-cell reference dataset. The ICA approach deployed in CellsFromSpace decomposes spatial transcriptomics data into interpretable components associated with distinct cell types or activities. ICA also enables noise or artifact reduction and subset analysis of cell types of interest through component selection. We demonstrate the flexibility and performance of CellsFromSpace using real-world samples to demonstrate ICA’s ability to successfully identify spatially distributed cells as well as rare diffuse cells, and quantitatively deconvolute datasets from the Visium, Slide-seq, MERSCOPE, and CosMX technologies. Comparative analysis with a current alternative reference-free deconvolution tool also highlights CellsFromSpace’s speed, scalability and accuracy in processing complex, even multisample datasets. CellsFromSpace also offers a user-friendly graphical interface enabling non-bioinformaticians to annotate and interpret components based on spatial distribution and contributor genes, and perform full downstream analysis. Availability and implementation CellsFromSpace (CFS) is distributed as an R package available from github at https://github.com/gustaveroussy/CFS along with tutorials, examples, and detailed documentation.

Funder

Bristol Myers Squibb

Cancer of Aviesan

Cancer Control Strategy

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3