Enhancing biomedical search interfaces with images

Author:

Trelles Trabucco Juan1ORCID,Arighi Cecilia2ORCID,Shatkay Hagit2,Marai G Elisabeta1ORCID

Affiliation:

1. Department of Computer Science, University of Illinois Chicago , Chicago, IL 60607, USA

2. Department of Computer and Information Science, University of Delaware , Newark, DE 19716, USA

Abstract

Abstract Motivation Figures in biomedical papers communicate essential information with the potential to identify relevant documents in biomedical and clinical settings. However, academic search interfaces mainly search over text fields. Results We describe a search system for biomedical documents that leverages image modalities and an existing index server. We integrate a problem-specific taxonomy of image modalities and image-based data into a custom search system. Our solution features a front-end interface to enhance classical document search results with image-related data, including page thumbnails, figures, captions and image-modality information. We demonstrate the system on a subset of the CORD-19 document collection. A quantitative evaluation demonstrates higher precision and recall for biomedical document retrieval. A qualitative evaluation with domain experts further highlights our solution’s benefits to biomedical search. Availability and implementation A demonstration is available at https://runachay.evl.uic.edu/scholar. Our code and image models can be accessed via github.com/uic-evl/bio-search. The dataset is continuously expanded.

Funder

National Institutes of Health

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Reference29 articles.

1. SUS-a quick and dirty usability scale;Brooke;Usab. Eval. Indus,1996

2. Overview of the COVID-19 text mining tool interactive demonstration track in BioCreative VII;Chatr-Aryamontri;Database (Oxford),2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MouseScholar: Evaluating an Image+Text Search System for Biocuration;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3