Snekmer: a scalable pipeline for protein sequence fingerprinting based on amino acid recoding

Author:

Chang Christine H1,Nelson William C1,Jerger Abby1,Wright Aaron T2ORCID,Egbert Robert G1ORCID,McDermott Jason E13ORCID

Affiliation:

1. Biological Sciences Division, Pacific Northwest National Laboratory , Richland, WA 99352, USA

2. Department of Biology, Baylor University , Waco, TX 76798, USA

3. Department of Molecular Microbiology and Immunology, Oregon Health & Science University , Portland, OR 97239, USA

Abstract

Abstract Motivation The vast expansion of sequence data generated from single organisms and microbiomes has precipitated the need for faster and more sensitive methods to assess evolutionary and functional relationships between proteins. Representing proteins as sets of short peptide sequences (kmers) has been used for rapid, accurate classification of proteins into functional categories; however, this approach employs an exact-match methodology and thus may be limited in terms of sensitivity and coverage. We have previously used similarity groupings, based on the chemical properties of amino acids, to form reduced character sets and recode proteins. This amino acid recoding (AAR) approach simplifies the construction of protein representations in the form of kmer vectors, which can link sequences with distant sequence similarity and provide accurate classification of problematic protein families. Results Here, we describe Snekmer, a software tool for recoding proteins into AAR kmer vectors and performing either (i) construction of supervised classification models trained on input protein families or (ii) clustering for de novo determination of protein families. We provide examples of the operation of the tool against a set of nitrogen cycling families originally collected using both standard hidden Markov models and a larger set of proteins from Uniprot and demonstrate that our method accurately differentiates these sequences in both operation modes. Availability and implementation Snekmer is written in Python using Snakemake. Code and data used in this article, along with tutorial notebooks, are available at http://github.com/PNNL-CompBio/Snekmer under an open-source BSD-3 license. Supplementary information Supplementary data are available at Bioinformatics Advances online.

Funder

Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Reference33 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3