An extension of latent unknown clustering integrating multi-omics data (LUCID) incorporating incomplete omics data

Author:

Zhao Yinqi1,Jia Qiran1ORCID,Goodrich Jesse1ORCID,Darst Burcu2,Conti David V1

Affiliation:

1. Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California , Los Angeles, CA 90033, United States

2. Public Health Sciences Division, Fred Hutch Cancer Center , Seattle, WA 98109, United States

Abstract

Abstract Motivation Latent unknown clustering integrating multi-omics data is a novel statistical model designed for multi-omics data analysis. It integrates omics data with exposures and an outcome through a latent cluster, elucidating how exposures influence processes reflected in multi-omics measurements, ultimately affecting an outcome. A significant challenge in multi-omics analysis is the issue of list-wise missingness. To address this, we extend the model to incorporate list-wise missingness within an integrated imputation framework, which can also handle sporadic missingness when necessary. Results Simulation studies demonstrate that our integrated imputation approach produces consistent and less biased estimates, closely reflecting true underlying values. We applied this model to data from the ISGlobal/ATHLETE “Exposome Data Challenge Event” to explore the association between maternal exposure to hexachlorobenzene and childhood body mass index by integrating incomplete proteomics data from 1301 children. The model successfully estimated proteomics profiles for two clusters representing higher and lower body mass index, characterizing the potential profiles linking prenatal hexachlorobenzene levels and childhood body mass index. Availability and implementation The proposed methods have been implemented in the R package LUCIDus. The source code is available at https://github.com/USCbiostats/LUCIDus.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3