Improving classification of correct and incorrect protein–protein docking models by augmenting the training set

Author:

Barradas-Bautista Didier1,Almajed Ali2,Oliva Romina3,Kalnis Panos2,Cavallo Luigi4ORCID

Affiliation:

1. Kaust Visualization Lab, Core Lab Division, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia

2. Computer, Electrical and Mathematical Science and Engineering Division, Kaust Extreme Computing Center, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia

3. Department of Sciences and Technologies, University of Naples “Parthenope” , I-80143 Naples, Italy

4. Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia

Abstract

Abstract Motivation Protein–protein interactions drive many relevant biological events, such as infection, replication and recognition. To control or engineer such events, we need to access the molecular details of the interaction provided by experimental 3D structures. However, such experiments take time and are expensive; moreover, the current technology cannot keep up with the high discovery rate of new interactions. Computational modeling, like protein–protein docking, can help to fill this gap by generating docking poses. Protein–protein docking generally consists of two parts, sampling and scoring. The sampling is an exhaustive search of the tridimensional space. The caveat of the sampling is that it generates a large number of incorrect poses, producing a highly unbalanced dataset. This limits the utility of the data to train machine learning classifiers. Results Using weak supervision, we developed a data augmentation method that we named hAIkal. Using hAIkal, we increased the labeled training data to train several algorithms. We trained and obtained different classifiers; the best classifier has 81% accuracy and 0.51 Matthews’ correlation coefficient on the test set, surpassing the state-of-the-art scoring functions. Availability and implementation Docking models from Benchmark 5 are available at https://doi.org/10.5281/zenodo.4012018. Processed tabular data are available at https://repository.kaust.edu.sa/handle/10754/666961. Google colab is available at https://colab.research.google.com/drive/1vbVrJcQSf6\_C3jOAmZzgQbTpuJ5zC1RP?usp=sharing Supplementary information Supplementary data are available at Bioinformatics Advances online.

Funder

AI Initiative

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3