An improved framework for detecting discrete epidemiologically meaningful partitions in hierarchically clustered genetic data

Author:

Jacobson David K1,Low Ross12,Plucinski Mateusz M1,Barratt Joel L N1ORCID

Affiliation:

1. Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention , Atlanta, GA, 30329, United States

2. Oak Ridge Institute of Science and Education , Oak Ridge, TN, 37830, United States

Abstract

Abstract Motivation Hierarchical clustering of microbial genotypes has the limitation that hierarchical clusters are nested, where smaller groups of related isolates exist within larger groups that get progressively larger as relationships become increasingly distant. In an epidemiologic context, investigators must dissect hierarchical trees into discrete groupings that are epidemiologically meaningful. We recently described a statistical framework (Method A) for dissecting hierarchical trees that attempts to minimize investigator bias. Here, we apply a modified version of that framework (Method B) to a hierarchical tree constructed from 2111 genotypes of the foodborne parasite Cyclospora, including 639 genotypes linked to epidemiologically defined outbreaks. To evaluate Method B’s performance, we examined the concordance between these epidemiologically defined groupings and the genetic partitions identified. We also used the same epidemiologic clusters to evaluate the performance of Method A, plus two tree-dissection methods (cutreeHybrid and cutreeDynamic) available within the Dynamic Tree Cut R package, in addition to the TreeCluster method and PARNAS. Results Compared to the other methods, Method B, TreeCluster, and PARNAS were the most accurate (99.4%) in identifying genetic groups that reflected the epidemiologic groupings, noting that TreeCluster and PARNAS performed identically on our dataset. CutreeHybrid identified groups reflecting patterns in the wider Cyclospora population structure but lacked finer, strain-level discrimination (Simpson’s D: cutreeHybrid=0.785). CutreeDynamic displayed good strain discrimination (Simpson’s D = 0.933), though lacked sensitivity (77%). At two different threshold/radius settings TreeCluster/PARNAS displayed similar utility to Method B. However, Method B computes a tree-dissection threshold automatically, and the threshold/radius settings used when executing TreeCluster/PARNAS here were computed using Method B. Using a TreeCluster threshold of 0.045 as recommended in the TreeCluster documentation, epidemiologic utility dropped markedly below that of Method B. Availability and implementation Relevant code and data are publicly available. Source code (Method B) and instructions for its use are available here: https://github.com/Joel-Barratt/Hierarchical-tree-dissection-framework.

Funder

United States Centers for Disease Control and Prevention

Division of Parasitic Diseases and Malaria

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Genetics,Molecular Biology,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3