Hierarchical auditory perception for species discrimination and individual recognition in the music frog

Author:

Fan Yanzhu12,Fang Ke13,Sun Ruolei13,Shen Di12,Yang Jing12,Tang Yezhong12,Fang Guangzhan12

Affiliation:

1. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

2. College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Life Science, Anhui University, Hefei 230601, China

Abstract

Abstract The ability to discriminate species and recognize individuals is crucial for reproductive success and/or survival in most animals. However, the temporal order and neural localization of these decision-making processes has remained unclear. In this study, event-related potentials (ERPs) were measured in the telencephalon, diencephalon, and mesencephalon of the music frog Nidirana daunchina. These ERPs were elicited by calls from 1 group of heterospecifics (recorded from a sympatric anuran species) and 2 groups of conspecifics that differed in their fundamental frequencies. In terms of the polarity and position within the ERP waveform, auditory ERPs generally consist of 4 main components that link to selective attention (N1), stimulus evaluation (P2), identification (N2), and classification (P3). These occur around 100, 200, 250, and 300 ms after stimulus onset, respectively. Our results show that the N1 amplitudes differed significantly between the heterospecific and conspecific calls, but not between the 2 groups of conspecific calls that differed in fundamental frequency. On the other hand, the N2 amplitudes were significantly different between the 2 groups of conspecific calls, suggesting that the music frogs discriminated the species first, followed by individual identification, since N1 and N2 relate to selective attention and stimuli identification, respectively. Moreover, the P2 amplitudes evoked in females were significantly greater than those in males, indicating the existence of sexual dimorphism in auditory discrimination. In addition, both the N1 amplitudes in the left diencephalon and the P2 amplitudes in the left telencephalon were greater than in other brain areas, suggesting left hemispheric dominance in auditory perception. Taken together, our results support the hypothesis that species discrimination and identification of individual characteristics are accomplished sequentially, and that auditory perception exhibits differences between sexes and in spatial dominance.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3