Low diversity, little genetic structure but no inbreeding in a high-density island endemic pit-viper Gloydius shedaoensis

Author:

Wen Guannan1,Jin Long2,Wu Yayong3,Wang Xiaoping4,Fu Jinzhong15,Qi Yin12

Affiliation:

1. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

2. Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China

3. College of Life Sciences and Food Engineering, Yibin University, Yibin 644007, China

4. Nature Conservation of Snake Island and Laotieshan Mountain, Dalian 116041, China

5. Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada

Abstract

Abstract Island species and their ecosystems play an important role in global biodiversity preservation, and many vulnerable island species are conservation priorities. Although insular habitat likely facilitates the species diversification process, it may also aggravate the fragility of these species with high risk of inbreeding. The Shedao pit-viper Gloydius shedaoensis is an island endemic species with an extremely high population density, which has been categorized as vulnerable in the IUCN (International Union for the Conservation of Nature and Natural Resources) Red List. We collected 13,148 SNP (Single Nucleotide Polymorphism) from across its genome and examined its genetic diversity and demographic history. The Shedao pit-viper has a low genetic diversity but shows no sign of inbreeding. Furthermore, population genetic structure analysis, including the neighbor-joining tree, principal coordinate analysis, clustering, and spatial autocorrelation, revealed a general lack of spatial structure. Only the isolation by distance residues suggested a weak patchiness. Overall, the population is nearly panmictic and gene flow is evenly distributed across the island. A large number of individuals, small size of the island, and the lack of population structure likely all contribute to the lack of inbreeding in this species. We also detected signs of male-biased dispersal, which likely is another inbreeding avoidance strategy. Historical demographic analysis suggested that the historical population size and distribution of the species are much larger than their current ones. The multiple transgressive–regressive events since the Late Pleistocene are likely the main cause of the population size changes. Taken together, our results provide a basic scientific foundation for the conservation of this interesting and important species.

Funder

Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University

Nature Conservation of Snake Island and Laotieshan Mountain, Dalian, China

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3