A Novel Fully Automated Mri-Based Deep Learning Method for Classification of Idh Mutation Status in Brain Gliomas

Author:

Yogananda Chandan Ganesh Bangalore1,Shah Bhavya R1,Vejdani-Jahromi Maryam1,Nalawade Sahil S1,Murugesan Gowtham K1,Yu Frank F1,Pinho Marco C1,Wagner Benjamin C1,Mickey Bruce2,Patel Toral R2,Fei Baowei3,Madhuranthakam Ananth J1,Maldjian Joseph A1

Affiliation:

1. Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas

2. Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas

3. Department of Bioengineering, University of Texas at Dallas, Richardson, Texas

Abstract

Abstract Background Isocitrate dehydrogenase (IDH) mutation status has emerged as an important prognostic marker in gliomas. Currently, reliable IDH mutation determination requires invasive surgical procedures. The purpose of this study was to develop a highly-accurate, MRI-based, voxel-wise deep-learning IDH-classification network using T2-weighted (T2w) MR images and compare its performance to a multi-contrast network. Methods Multi-parametric brain MRI data and corresponding genomic information were obtained for 214 subjects (94 IDH-mutated, 120 IDH wild-type) from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA). Two separate networks were developed including a T2w image only network (T2-net) and a multi-contrast (T2w, FLAIR, and T1 post-contrast) network (TS-net) to perform IDH classification and simultaneous single label tumor segmentation. The networks were trained using 3D-Dense-UNets. Three-fold cross-validation was performed to generalize the networks’ performance. ROC analysis was also performed. Dice-scores were computed to determine tumor segmentation accuracy. Results T2-net demonstrated a mean cross-validation accuracy of 97.14% ±0.04 in predicting IDH mutation status, with a sensitivity of 0.97 ±0.03, specificity of 0.98 ±0.01, and an AUC of 0.98 ±0.01.  TS-net achieved a mean cross-validation accuracy of 97.12% ±0.09, with a sensitivity of 0.98 ±0.02, specificity of 0.97 ±0.001, and an AUC of 0.99 ±0.01. The mean whole tumor segmentation Dice-scores were 0.85 ±0.009 for T2-net and 0.89 ±0.006 for TS-net. Conclusion We demonstrate high IDH classification accuracy using only T2-weighted MR images. This represents an important milestone towards clinical translation.

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Neurology (clinical),Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3