Pharmacokinetics, safety, and tolerability of olaparib and temozolomide for recurrent glioblastoma: results of the phase I OPARATIC trial

Author:

Hanna Catherine1,Kurian Kathreena M2,Williams Karin1,Watts Colin3,Jackson Alan4,Carruthers Ross1,Strathdee Karen1,Cruickshank Garth3,Dunn Laurence5,Erridge Sara6,Godfrey Lisa7,Jefferies Sarah8,McBain Catherine9,Sleigh Rebecca10,McCormick Alex11,Pittman Marc7,Halford Sarah7,Chalmers Anthony J1

Affiliation:

1. Institute of Cancer Sciences, University of Glasgow, Glasgow, UK

2. Brain Tumour Research Centre, University of Bristol, Bristol, UK

3. Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK

4. Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK

5. Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK

6. Edinburgh Centre for Neuro-Oncology, NHS Lothian, Edinburgh, UK

7. Cancer Research UK Centre for Drug Development, London, UK

8. Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK

9. The Christie NHS Foundation Trust, Manchester, UK

10. LGC Group, Cambridgeshire, UK

11. AstraZeneca, Macclesfield, UK

Abstract

Abstract Background The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib potentiated radiation and temozolomide (TMZ) chemotherapy in preclinical glioblastoma models but brain penetration was poor. Clinically, PARP inhibitors exacerbate the hematological side effects of TMZ. The OPARATIC trial was conducted to measure penetration of recurrent glioblastoma by olaparib and assess the safety and tolerability of its combination with TMZ. Methods Preclinical pharmacokinetic studies evaluated olaparib tissue distribution in rats and tumor-bearing mice. Adult patients with recurrent glioblastoma received various doses and schedules of olaparib and low-dose TMZ in a 3 + 3 design. Suitable patients received olaparib prior to neurosurgical resection; olaparib concentrations in plasma, tumor core and tumor margin specimens were measured by mass spectrometry. A dose expansion cohort tested tolerability and efficacy of the recommended phase II dose (RP2D). Radiosensitizing effects of olaparib were measured by clonogenic survival in glioblastoma cell lines. Results Olaparib was a substrate for multidrug resistance protein 1 and showed no brain penetration in rats but was detected in orthotopic glioblastoma xenografts. Clinically, olaparib was detected in 71/71 tumor core specimens (27 patients; median, 496 nM) and 21/21 tumor margin specimens (9 patients; median, 512.3 nM). Olaparib exacerbated TMZ-related hematological toxicity, necessitating intermittent dosing. RP2D was olaparib 150 mg (3 days/week) with TMZ 75 mg/m2 daily for 42 days. Fourteen (36%) of 39 evaluable patients were progression free at 6 months. Olaparib radiosensitized 6 glioblastoma cell lines at clinically relevant concentrations of 100 and 500 nM. Conclusion Olaparib reliably penetrates recurrent glioblastoma at radiosensitizing concentrations, supporting further clinical development and highlighting the need for better preclinical models.

Funder

Cancer Research UK Centre for Drug Development

UK National Cancer Research Network

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Clinical Neurology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3