DNA methylation profiling as a model for discovery and precision diagnostics in neuro-oncology

Author:

Pratt Drew1ORCID,Sahm Felix2,Aldape Kenneth3ORCID

Affiliation:

1. Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA

2. Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany

3. Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA

Abstract

Abstract Recent years have witnessed a shift to more objective and biologically-driven methods for central nervous system (CNS) tumor classification. The 2016 world health organization (WHO) classification update (“blue book”) introduced molecular diagnostic criteria into the definitions of specific entities as a response to the plethora of evidence that key molecular alterations define distinct tumor types and are clinically meaningful. While in the past such diagnostic alterations included specific mutations, copy number changes, or gene fusions, the emergence of DNA methylation arrays in recent years has similarly resulted in improved diagnostic precision, increased reliability, and has provided an effective framework for the discovery of new tumor types. In many instances, there is an intimate relationship between these mutations/fusions and DNA methylation signatures. The adoption of methylation data into neuro-oncology nosology has been greatly aided by the availability of technology compatible with clinical diagnostics, along with the development of a freely accessible machine learning-based classifier. In this review, we highlight the utility of DNA methylation profiling in CNS tumor classification with a focus on recently described novel and rare tumor types, as well as its contribution to refining existing types.

Funder

National Institutes of Health

Center for Cancer Research

National Cancer Institute

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Clinical Neurology,Oncology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3