Recovery from the damage of cranial radiation modulated by memantine, an NMDA receptor antagonist, combined with hyperbaric oxygen therapy

Author:

Hokama Yohei1,Nishimura Masahiko1,Usugi Ryoichi1,Fujiwara Kyoko1,Katagiri Chiaki1,Takagi Hiroshi1,Ishiuchi Shogo1ORCID

Affiliation:

1. Department of Neurosurgery, Graduate School of Medicine, University of The Ryukyus , 207 Uehara, Nishihara-machi, Okinawa 903-0215 , Japan

Abstract

Abstract Background Radiotherapy is an important treatment option for central nervous system malignancies. However, cranial radiation induces hippocampal dysfunction and white matter injury; this leads to cognitive dysfunction, and results in a reduced quality of life in patients. Excitatory glutamate signaling through N-methyl-d-aspartate receptors (NMDARs) plays a central role both in hippocampal neurogenesis and in the myelination of oligodendrocytes in the cerebrum. Methods We provide a method for quantifying neurogenesis in human subjects in live brain during cancer therapy. Neuroimaging using originally created behavioral tasks was employed to examine human hippocampal memory pathway in patients with brain disorders. Results Treatment with memantine, a non-competitive NMDAR antagonist, reversed impairment in hippocampal pattern separation networks as detected by functional magnetic resonance imaging. Hyperbaric preconditioning of the patients just before radiotherapy with memantine mostly reversed white matter injury as detected by whole brain analysis with Tract-Based Spatial Statics. Neuromodulation combined with the administration of hyperbaric oxygen therapy and memantine during radiotherapy facilitated the restoration of hippocampal function and white matter integrity, and improved higher cognitive function in patients receiving cranial radiation. Conclusions The method described herein, for diagnosis of hippocampal dysfunction, and therapeutic intervention can be utilized to restore some of the cognitive decline experienced by patients who have received cranial radiation. The underlying mechanism of restoration is the production of new neurons, which enhances functionality in pattern separation networks in the hippocampi, resulting in an increase in cognitive score, and restoration of microstructural integrity of white matter tracts revealed by Tract-Based Spatial Statics Analysis.

Funder

Grants-in-Aid for Scientific Research

Challenging Exploratory Research

Special Account Budget for Education and Research

Ministry of Education, Culture, Sports, Science and Technology

Industrial Disease Clinical Research Grants by Ministry of Health, Labour and Welfare

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Neurology (clinical),Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3