Machine learning approach to differentiation of peripheral schwannomas and neurofibromas: A multi-center study

Author:

Zhang Michael12ORCID,Tong Elizabeth2,Wong Sam2,Hamrick Forrest3,Mohammadzadeh Maryam4,Rao Vaishnavi5,Pendleton Courtney6ORCID,Smith Brandon W6,Hug Nicholas F5,Biswal Sandip2,Seekins Jayne2,Napel Sandy2,Spinner Robert J6,Mahan Mark A3,Yeom Kristen W2,Wilson Thomas J1ORCID

Affiliation:

1. Department of Neurosurgery, Stanford University, Stanford, California, USA

2. Department of Radiology, Stanford University, Stanford, California, USA

3. Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA

4. Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran

5. Stanford School of Medicine, Stanford University, Stanford, California, USA

6. Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA

Abstract

Abstract Background Non-invasive differentiation between schwannomas and neurofibromas is important for appropriate management, preoperative counseling, and surgical planning, but has proven difficult using conventional imaging. The objective of this study was to develop and evaluate machine learning approaches for differentiating peripheral schwannomas from neurofibromas. Methods We assembled a cohort of schwannomas and neurofibromas from 3 independent institutions and extracted high-dimensional radiomic features from gadolinium-enhanced, T1-weighted MRI using the PyRadiomics package on Quantitative Imaging Feature Pipeline. Age, sex, neurogenetic syndrome, spontaneous pain, and motor deficit were recorded. We evaluated the performance of 6 radiomics-based classifier models with and without clinical features and compared model performance against human expert evaluators. Results One hundred and seven schwannomas and 59 neurofibromas were included. The primary models included both clinical and imaging data. The accuracy of the human evaluators (0.765) did not significantly exceed the no-information rate (NIR), whereas the Support Vector Machine (0.929), Logistic Regression (0.929), and Random Forest (0.905) classifiers exceeded the NIR. Using the method of DeLong, the AUCs for the Logistic Regression (AUC = 0.923) and K Nearest Neighbor (AUC = 0.923) classifiers were significantly greater than the human evaluators (AUC = 0.766; p = 0.041). Conclusions The radiomics-based classifiers developed here proved to be more accurate and had a higher AUC on the ROC curve than expert human evaluators. This demonstrates that radiomics using routine MRI sequences and clinical features can aid in differentiation of peripheral schwannomas and neurofibromas.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Clinical Neurology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3