Cerebrospinal fluid methylome-based liquid biopsies for accurate malignant brain neoplasm classification

Author:

Zuccato Jeffrey A12ORCID,Patil Vikas1,Mansouri Sheila1,Voisin Mathew12,Chakravarthy Ankur3,Shen Shu Yi3,Nassiri Farshad12,Mikolajewicz Nicholas4ORCID,Trifoi Mara5,Skakodub Anna5,Zacharia Brad5,Glantz Michael5,De Carvalho Daniel D36,Mansouri Alireza5ORCID,Zadeh Gelareh12ORCID

Affiliation:

1. MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto , Toronto, Ontario , Canada

2. Division of Neurosurgery, Department of Surgery, University of Toronto , Toronto, Ontario , Canada

3. Princess Margaret Cancer Centre, University Health Network , Toronto, Ontario , Canada

4. Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto , Toronto, Ontario , Canada

5. Department of Neurosurgery, Penn State Milton S. Hershey Medical Center , Hershey, Pennsylvania,   USA

6. Department of Medical Biophysics, University of Toronto , Toronto, Ontario , Canada

Abstract

Abstract Background Resolving the differential diagnosis between brain metastases (BM), glioblastomas (GBM), and central nervous system lymphomas (CNSL) is an important dilemma for the clinical management of the main three intra-axial brain tumor types. Currently, treatment decisions require invasive diagnostic surgical biopsies that carry risks and morbidity. This study aimed to utilize methylomes from cerebrospinal fluid (CSF), a biofluid proximal to brain tumors, for reliable non-invasive classification that addresses limitations associated with low target abundance in existing approaches. Methods Binomial GLMnet classifiers of tumor type were built, in fifty iterations of 80% discovery sets, using CSF methylomes obtained from 57 BM, GBM, CNSL, and non-neoplastic control patients. Publicly-available tissue methylation profiles (N = 197) on these entities and normal brain parenchyma were used for validation and model optimization. Results Models reliably distinguished between BM (area under receiver operating characteristic curve [AUROC] = 0.93, 95% confidence interval [CI]: 0.71–1.0), GBM (AUROC = 0.83, 95% CI: 0.63–1.0), and CNSL (AUROC = 0.91, 95% CI: 0.66–1.0) in independent 20% validation sets. For validation, CSF-based methylome signatures reliably distinguished between tumor types within external tissue samples and tumors from non-neoplastic controls in CSF and tissue. CSF methylome signals were observed to align closely with tissue signatures for each entity. An additional set of optimized CSF-based models, built using tumor-specific features present in tissue data, showed enhanced classification accuracy. Conclusions CSF methylomes are reliable for liquid biopsy-based classification of the major three malignant brain tumor types. We discuss how liquid biopsies may impact brain cancer management in the future by avoiding surgical risks, classifying unbiopsiable tumors, and guiding surgical planning when resection is indicated.

Funder

MacFeeters-Hamilton Grant

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Neurology (clinical),Oncology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3