Improved detection of diffuse glioma infiltration with imaging combinations: a diagnostic accuracy study

Author:

Verburg Niels12,Koopman Thomas3,Yaqub Maqsood M3,Hoekstra Otto S3,Lammertsma Adriaan A3,Barkhof Frederik34,Pouwels Petra J W3,Reijneveld Jaap C15,Heimans Jan J5,Rozemuller Annemarie J M6,Bruynzeel Anne M E7,Lagerwaard Frank7,Vandertop William P12,Boellaard Ronald3,Wesseling Pieter1268ORCID,de Witt Hamer Philip C12

Affiliation:

1. Brain Tumor Center Amsterdam, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands

2. Neurosurgical Center Amsterdam, Amsterdam UMC, Amsterdam, Netherlands

3. Department of Radiology and Nuclear Medicine, Amsterdam UMC, location Free University Medical Center (VUmc), Amsterdam, Netherlands

4. University College London Institute of Neurology and Healthcare Engineering, London, UK

5. Department of Neurology, Amsterdam UMC, VUmc, Amsterdam, Netherlands

6. Department of Pathology, Amsterdam UMC, VUmc, Amsterdam, Netherlands

7. Department of Radiotherapy, Amsterdam UMC, VUmc, Amsterdam, Netherlands

8. Princess Máxima Center for Pediatric Oncology and Department of Pathology, UMC Utrecht, Utrecht, Netherlands

Abstract

Abstract Background Surgical resection and irradiation of diffuse glioma are guided by standard MRI: T2/fluid attenuated inversion recovery (FLAIR)–weighted MRI for non-enhancing and T1-weighted gadolinium-enhanced (T1G) MRI for enhancing gliomas. Amino acid PET has been suggested as the new standard. Imaging combinations may improve standard MRI and amino acid PET. The aim of the study was to determine the accuracy of imaging combinations to detect glioma infiltration. Methods We included 20 consecutive adults with newly diagnosed non-enhancing glioma (7 diffuse astrocytomas, isocitrate dehydrogenase [IDH] mutant; 1 oligodendroglioma, IDH mutant and 1p/19q codeleted; 1 glioblastoma IDH wildtype) or enhancing glioma (glioblastoma, 9 IDH wildtype and 2 IDH mutant). Standardized preoperative imaging (T1-, T2-, FLAIR-weighted, and T1G MRI, perfusion and diffusion MRI, MR spectroscopy and O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET) PET) was co-localized with multiregion stereotactic biopsies preceding resection. Tumor presence in the biopsies was assessed by 2 neuropathologists. Diagnostic accuracy was determined using receiver operating characteristic analysis. Results A total of 174 biopsies were obtained (63 from 9 non-enhancing and 111 from 11 enhancing gliomas), of which 129 contained tumor (50 from non-enhancing and 79 from enhancing gliomas). In enhancing gliomas, the combination of apparent diffusion coefficient (ADC) with [18F]FET PET (area under the curve [AUC], 95% CI: 0.89, 0.79‒0.99) detected tumor better than T1G MRI (0.56, 0.39‒0.72; P < 0.001) and [18F]FET PET (0.76, 0.66‒0.86; P = 0.001). In non-enhancing gliomas, no imaging combination detected tumor significantly better than standard MRI. FLAIR-weighted MRI had an AUC of 0.81 (0.65–0.98) compared with 0.69 (0.56–0.81; P = 0.019) for [18F]FET PET. Conclusion Combining ADC and [18F]FET PET detects glioma infiltration better than standard MRI and [18F]FET PET in enhancing gliomas, potentially enabling better guidance of local therapy.

Funder

Dutch Cancer Society

Cancer Center Amsterdam

Netherlands Organisation for Health Research and Development

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Clinical Neurology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3