Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas

Author:

Zhang Biqi1,Chang Ken1,Ramkissoon Shakti1,Tanguturi Shyam1,Bi Wenya Linda1,Reardon David A.1,Ligon Keith L.1,Alexander Brian M.1,Wen Patrick Y.1,Huang Raymond Y.1

Affiliation:

1. Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts (B.Z., K.C., R.Y.H.); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (S.R., K.L.L.); Department of Pathology, Harvard Medical School, Boston, Massachusetts (S.R., K.L.L.); Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (S.R., K.L.L.); Department of Medical Oncolog

Abstract

Abstract Background. High-grade gliomas with mutations in the isocitrate dehydrogenase (IDH) gene family confer longer overall survival relative to their IDH-wild-type counterparts. Accurate determination of the IDH genotype preoperatively may have both prognostic and diagnostic value. The current study used a machine-learning algorithm to generate a model predictive of IDH genotype in high-grade gliomas based on clinical variables and multimodal features extracted from conventional MRI. Methods. Preoperative MRIs were obtained for 120 patients with primary grades III (n = 35) and IV (n = 85) glioma in this retrospective study. IDH genotype was confirmed for grade III (32/35, 91%) and IV (22/85, 26%) tumors by immunohistochemistry, spectrometry-based mutation genotyping (OncoMap), or multiplex exome sequencing (OncoPanel). IDH1 and IDH2 mutations were mutually exclusive, and all mutated tumors were collapsed into one IDH-mutated cohort. Cases were randomly assigned to either the training (n = 90) or validation cohort (n = 30). A total of 2970 imaging features were extracted from pre- and postcontrast T1-weighted, T2-weighted, and apparent diffusion coefficient map. Using a random forest algorithm, nonredundant features were integrated with clinical data to generate a model predictive of IDH genotype. Results. Our model achieved accuracies of 86% (area under the curve [AUC] = 0.8830) in the training cohort and 89% (AUC = 0.9231) in the validation cohort. Features with the highest predictive value included patient age as well as parametric intensity, texture, and shape features. Conclusion. Using a machine-learning algorithm, we achieved accurate prediction of IDH genotype in high-grade gliomas with preoperative clinical and MRI features.

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Clinical Neurology,Oncology

Cited by 193 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3