A novel compound EPIC-0412 reverses temozolomide resistance via inhibiting DNA repair/MGMT in glioblastoma

Author:

Zhao Jixing1,Yang Shixue1,Cui Xiaoteng1,Wang Qixue1,Yang Eryan1,Tong Fei1,Hong Biao1,Xiao Menglin23,Xin Lei23,Xu Can23,Tan Yanli43,Kang Chunsheng1ORCID

Affiliation:

1. Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City , Tianjin 300052 , China

2. Department of Neurosurgery, Affiliated Hospital of Hebei University , Baoding 071000 , China

3. Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma , Baoding 071000 , China

4. Department of Pathology, Affiliated Hospital of Hebei University , Baoding 071000 , China

Abstract

Abstract Background Temozolomide (TMZ) resistance has become an important obstacle affecting its therapeutic benefits. O6-methylguanine DNA methyltransferase (MGMT) is primarily responsible for the TMZ resistance in Glioblastoma multiforme (GBM) patients. In addition, active DNA damage repair pathways can also lead to TMZ resistance. Here, we reported a novel small-molecule inhibitor EPIC-0412 that improved the therapeutic efficacy of TMZ by 
inhibiting the DNA damage repair pathway and MGMT in GBM via epigenetic pathways. Methods The small-molecule compound EPIC-0412 was obtained through high-throughput screening. RNA immunoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP), and chromatin immunoprecipitation (ChIP) assays were used to verify the effect of EPIC-0412. Co-immunoprecipitation (Co-IP) was used to elucidate the interactions of transcription factors at the MGMT promoter region. Animal experiments using a mouse model were performed to verify the efficacy of EPIC-0412 in sensitizing GBM cells to TMZ. Results EPIC-0412 physically interrupts the binding of HOTAIR and EZH2, leading to the upregulation of CDKN1A and BBC3, causing cell cycle arrest and apoptosis in GBM cells. EPIC-0412 inhibits DNA damage response in GBM cells through the p21-E2F1 DNA damage repair axis. EPIC-0412 epigenetically silences MGMT through its interaction with the ATF3-p-p65-HADC1 axis at the MGMT promoter region. The application of EPIC-0412 restored the TMZ sensitivity in GBM in vivo experiments. Conclusion This study discovered a small-molecule inhibitor EPIC-0412, which enhanced the chemotherapeutic effect of TMZ by acting on the p21-E2F1 DNA damage repair axis and ATF3-p-p65-MGMT axis, providing 
evidence for combining epigenetic drugs to increase the sensitization toward TMZ in GBM patients.

Funder

National Natural Science Foundation of China

Tianjin Key R&D Plan of Tianjin Science and Technology Plan Project

Hebei Natural Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Neurology (clinical),Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3