Radiogenomics to characterize regional genetic heterogeneity in glioblastoma

Author:

Hu Leland S.1,Ning Shuluo1,Eschbacher Jennifer M.1,Baxter Leslie C.1,Gaw Nathan1,Ranjbar Sara1,Plasencia Jonathan1,Dueck Amylou C.1,Peng Sen1,Smith Kris A.1,Nakaji Peter1,Karis John P.1,Quarles C. Chad1,Wu Teresa1,Loftus Joseph C.1,Jenkins Robert B.1,Sicotte Hugues1,Kollmeyer Thomas M.1,O'Neill Brian P.1,Elmquist William1,Hoxworth Joseph M.1,Frakes David1,Sarkaria Jann1,Swanson Kristin R.1,Tran Nhan L.1,Li Jing1,Mitchell J. Ross1

Affiliation:

1. Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Ro

Abstract

Abstract Background Glioblastoma (GBM) exhibits profound intratumoral genetic heterogeneity. Each tumor comprises multiple genetically distinct clonal populations with different therapeutic sensitivities. This has implications for targeted therapy and genetically informed paradigms. Contrast-enhanced (CE)-MRI and conventional sampling techniques have failed to resolve this heterogeneity, particularly for nonenhancing tumor populations. This study explores the feasibility of using multiparametric MRI and texture analysis to characterize regional genetic heterogeneity throughout MRI-enhancing and nonenhancing tumor segments. Methods We collected multiple image-guided biopsies from primary GBM patients throughout regions of enhancement (ENH) and nonenhancing parenchyma (so called brain-around-tumor, [BAT]). For each biopsy, we analyzed DNA copy number variants for core GBM driver genes reported by The Cancer Genome Atlas. We co-registered biopsy locations with MRI and texture maps to correlate regional genetic status with spatially matched imaging measurements. We also built multivariate predictive decision-tree models for each GBM driver gene and validated accuracies using leave-one-out-cross-validation (LOOCV). Results We collected 48 biopsies (13 tumors) and identified significant imaging correlations (univariate analysis) for 6 driver genes: EGFR, PDGFRA, PTEN, CDKN2A, RB1, and TP53. Predictive model accuracies (on LOOCV) varied by driver gene of interest. Highest accuracies were observed for PDGFRA (77.1%), EGFR (75%), CDKN2A (87.5%), and RB1 (87.5%), while lowest accuracy was observed in TP53 (37.5%). Models for 4 driver genes (EGFR, RB1, CDKN2A, and PTEN) showed higher accuracy in BAT samples (n = 16) compared with those from ENH segments (n = 32). Conclusion MRI and texture analysis can help characterize regional genetic heterogeneity, which offers potential diagnostic value under the paradigm of individualized oncology.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Clinical Neurology,Oncology

Cited by 173 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3