TRIM24 promotes stemness and invasiveness of glioblastoma cells via activating Sox2 expression

Author:

Zhang Lu-hua12,Yin Yi-heng1,Chen Hong-zun2,Feng Shi-yu1,Liu Jia-lin1,Chen Ling1,Fu Wen-liang3,Sun Guo-chen1,Yu Xin-guang1,Xu Dong-gang3

Affiliation:

1. Department of Neurosurgery, the First Medical Center, Chinese PLA General Hospital, Beijing, China

2. Department of Neurosurgery, the Second Hospital of PLA Southern Navy, Sanya, Hainan, China

3. Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China

Abstract

Abstract Background Glioblastoma stem cells (GSCs) are a subpopulation of glioblastoma (GBM) cells that are critical for tumor invasion and treatment resistance. However, little is known about the function and mechanism of tripartite motif-containing 24 (TRIM24) in GSCs. Methods Immunofluorescence, flow cytometry, and western blot analyses were used to evaluate TRIM24 and cluster of differentiation (CD)133 expression profiles in GBM surgical specimens and GSC tumorspheres. Different TRIM24 expression levels in patients’ tumors, as measured by both immunohistochemistry and western blot, were related to their corresponding MRI data. Wound healing, Matrigel invasion, and xenograft immunohistochemistry were conducted to determine GBM cell invasion. Results We identified that TRIM24 was coexpressed with CD133 and Nestin in GBM tissues and tumorsphere cells. Limiting dilution assays and xenotransplantation experiments illustrated that knockdown of TRIM24 expression reduced GSC self-renewal capacity and invasive growth. TRIM24 expression levels were positively associated with the volumes of peritumoral T2 weighted image abnormality. Rescue experiments indicated TRIM24 participation in GBM infiltrative dissemination. Chromatin immunoprecipitation, reporter gene assay, PCR, western blot, and immunohistochemistry demonstrated that TRIM24 activated the expression of the pluripotency transcription factor sex determining region Y–box 2 (Sox2) to regulate GBM stemness and invasion in vitro and in vivo. Finally, the close relationship between TRIM24 and Sox2 was validated by testing samples enrolled in our study and exploring external databases. Conclusions Our findings uncover essential roles of the TRIM24–Sox2 axis in GBM stemness and invasiveness, suggesting TRIM24 as a potential target for effective GBM management.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Neurology (clinical),Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3