Application of radiomics to meningiomas: A systematic review

Author:

Patel Ruchit V1ORCID,Yao Shun12,Huang Raymond Y3,Bi Wenya Linda1ORCID

Affiliation:

1. Department of Neurosurgery, Brigham and Women’s Hospital , Boston, Massachusetts , USA

2. Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou , China

3. Division of Neuroradiology, Brigham and Women’s Hospital , Boston, Massachusetts , USA

Abstract

Abstract Background Quantitative imaging analysis through radiomics is a powerful technology to non-invasively assess molecular correlates and guide clinical decision-making. There has been growing interest in image-based phenotyping for meningiomas given the complexities in management. Methods We systematically reviewed meningioma radiomics analyses published in PubMed, Embase, and Web of Science until December 20, 2021. We compiled performance data and assessed publication quality using the radiomics quality score (RQS). Results A total of 170 publications were grouped into 5 categories of radiomics applications to meningiomas: Tumor detection and segmentation (21%), classification across neurologic diseases (54%), grading (14%), feature correlation (3%), and prognostication (8%). A majority focused on technical model development (73%) versus clinical applications (27%), with increasing adoption of deep learning. Studies utilized either private institutional (50%) or public (49%) datasets, with only 68% using a validation dataset. For detection and segmentation, radiomic models had a mean accuracy of 93.1 ± 8.1% and a dice coefficient of 88.8 ± 7.9%. Meningioma classification had a mean accuracy of 95.2 ± 4.0%. Tumor grading had a mean area-under-the-curve (AUC) of 0.85 ± 0.08. Correlation with meningioma biological features had a mean AUC of 0.89 ± 0.07. Prognostication of the clinical course had a mean AUC of 0.83 ± 0.08. While clinical studies had a higher mean RQS compared to technical studies, quality was low overall with a mean RQS of 6.7 ± 5.9 (possible range −8 to 36). Conclusions There has been global growth in meningioma radiomics, driven by data accessibility and novel computational methodology. Translatability toward complex tasks such as prognostication requires studies that improve quality, develop comprehensive patient datasets, and engage in prospective trials.

Funder

Courtney Meningioma Research Fund

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Neurology (clinical),Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3