Machine intelligence and the data-driven future of marine science

Author:

Malde Ketil12ORCID,Handegard Nils Olav1,Eikvil Line3,Salberg Arnt-Børre3

Affiliation:

1. Institute of Marine Research, Bergen, Norway

2. Department of Informatics, University of Bergen, Norway

3. Norwegian Computing Center, Oslo, Norway

Abstract

Abstract Oceans constitute over 70% of the earth's surface, and the marine environment and ecosystems are central to many global challenges. Not only are the oceans an important source of food and other resources, but they also play a important roles in the earth's climate and provide crucial ecosystem services. To monitor the environment and ensure sustainable exploitation of marine resources, extensive data collection and analysis efforts form the backbone of management programmes on global, regional, or national levels. Technological advances in sensor technology, autonomous platforms, and information and communications technology now allow marine scientists to collect data in larger volumes than ever before. But our capacity for data analysis has not progressed comparably, and the growing discrepancy is becoming a major bottleneck for effective use of the available data, as well as an obstacle to scaling up data collection further. Recent years have seen rapid advances in the fields of artificial intelligence and machine learning, and in particular, so-called deep learning systems are now able to solve complex tasks that previously required human expertise. This technology is directly applicable to many important data analysis problems and it will provide tools that are needed to solve many complex challenges in marine science and resource management. Here we give a brief review of recent developments in deep learning, and highlight the many opportunities and challenges for effective adoption of this technology across the marine sciences.

Funder

Research Council of Norway

Norwegian Ministry of Trade, Industry and Fisheries

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3