Time-series metabarcoding analysis of zooplankton diversity of the NW Atlantic continental shelf

Author:

Bucklin Ann1ORCID,Yeh Heidi D1,Questel Jennifer M2,Richardson David E3,Reese Bo1,Copley Nancy J4,Wiebe Peter H4

Affiliation:

1. University of Connecticut, Groton and Storrs, CT, USA

2. University of Alaska Fairbanks, Fairbanks, AK, USA

3. NOAA Northeast Fisheries Science Center, Narragansett, RI, USA

4. Woods Hole Oceanographic Institution, Woods Hole, MA, USA

Abstract

Abstract Biodiversity of zooplankton is central to the functioning of ocean ecosystems, yet morphological taxonomic analysis requires teams of experts and detailed examination of many samples. Metabarcoding (DNA sequencing of short amplified regions of one or a few genes from environmental samples) is a powerful tool for analysis of the composition and diversity of natural communities. The 18S rRNA V9 hypervariable region was sequenced for 26 zooplankton samples collected from the Gulf of Maine, Georges Bank, and Mid-Atlantic Bight during ecosystem monitoring surveys by the U.S. Northeast Fisheries Science Center during 2002–2012. A total of 7 648 033 sequences and 22 072 operational taxonomic units (OTUs) were identified and classified into 28 taxonomic groups of plankton. Comparative analysis of molecular (V9 sequence numbers) and morphological (abundance counts) focused on seven taxonomic groups and revealed similar patterns of variation among years and regions. Sequence numbers and abundance counts showed positive correlation for all groups, with significant correlations (p < 0.05) for Calanoida, Gastropoda, and Chaetognatha. Shannon diversity index values calculated using sequence numbers and abundance counts showed highly significant correlation (r = 0.625; p < 0.001) across all regions during 2002–2012. This study demonstrates the potential of metabarcoding for time-series analysis of zooplankton biodiversity, ocean ecosystem assessment, and fisheries management.

Funder

NOAA Northeast Fisheries Science Center

Ecosystem Monitoring

Publisher

Oxford University Press (OUP)

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3